
SystemVerilog Guide Harvard CS141

SystemVerilog Guide

Zachary Yedidia

October 19, 2020

Contents
1 Introduction 2

2 A Brief History 2

3 Gate-level Combinational Modeling 3
3.1 Modules . 3
3.2 Literals . 5
3.3 Parameters . 6

4 RT-level Combinational Modeling 8
4.1 Continuous Assignments . 8
4.2 Generate . 12
4.3 Always block for combinational design . 13

5 Modeling Sequential Circuits 18
5.1 Always block . 18
5.2 The D FF and register . 19
5.3 The D Latch . 21
5.4 General sequential circuit design . 22
5.5 Example: Shift register . 23

6 Modeling Finite State Machines 26
6.1 State diagrams . 26
6.2 General FSM circuit design . 27
6.3 Enumerations . 27
6.4 FSM code development . 27
6.5 Mealy versus Moore . 29

7 Modeling Memory 30
7.1 Register file . 30
7.2 RAM . 31
7.3 Additional considerations . 33

8 FPGA Devices 34

9 Development for the Nexys A7 36
9.1 Overview of the Nexys A7 . 36
9.2 Top modules and constraint files . 37
9.3 Vivado project organization . 38
9.4 Editing code with Vivado . 39
9.5 Simulation . 40
9.6 Synthesis and uploading to the FPGA . 42
9.7 Synthesis with TCL scripts . 43

1

SystemVerilog Guide Harvard CS141

10 Sources and further reading 44

1 Introduction

This is a guide and reference for learning SystemVerilog, the hardware description language we will use
to build circuits in CS141. This guide will help you to implement in SystemVerilog the various circuit
components and techniques in digital design you learn through lecture. As we cover the fundamentals of
digital design in the first half of the course, the teaching staff will hold sections to cover SystemVerilog
and the CAD tools we use to program the FPGA boards. This guide will serve as notes for those
sections. The first 7 sections cover usage of SystemVerilog for modeling combinational and sequential
circuits, and the last 2 sections discuss the FPGA board we will use for the course and the CAD tools
and development environment.

SystemVerilog is a language for describing and simulating digital systems. We can use SystemVerilog
to describe a model of a digital circuit as logic gates, and then use it to simulate how signals will
propagate through the system.

It is important to note that there are many differences between SystemVerilog and a traditional
programming language. When using SystemVerilog, your code will be compiled to static logic gates
and even though there is an order to the code, it will not be executed sequentially. It is often helpful to
have an underlying circuit in mind when writing SystemVerilog code.

SystemVerilog is a very large language, with many features for both logic design and formal verification.
We will focus on using the subset of SystemVerilog that can be actually synthesized into circuitry.
Rigorous testing methodology using formal verification or other techniques is outside the scope of this
guide. However we will touch on the basics of writing testbenches.

Hardware description languages like SystemVerilog often rely on the use of various idioms that synthesize
to different hardware elements. This guide is meant as an introduction to SystemVerilog and the idioms
it provides for creating digital circuits.

2 A Brief History

The Verilog hardware description language was written in the early 1980s for use at Gateway Design
Automation. While it began as proprietary software, it was made open-source in 1989, and the first
IEEE standard was released in 1995. Verilog was then updated by the IEEE multiple times, first in 2001,
and then in 2005. The 2001 version of Verilog is the most widely used version and is usually referred
to simply as “Verilog.” By 2001 it became clear that Verilog needed an update to accomodate the
increasing complexity in digital design. The IEEE began designing a substantial set of enhancements
under the name SystemVerilog. These enhancements were useful both for modeling circuits and for the
verification of those circuits. In 2005, a new standard of Verilog was created, and at the same time the
enhancements were released and documented in the 2005 SystemVerilog standard.

Following 2005, work began at the IEEE to merge the two standards into one language. The subsequent
language took on the name SystemVerilog, and was released in 2009. At this point Verilog was
completely replaced by SystemVerilog. SystemVerilog received an update to the standard in 2012, and
a minor update in 2017. Some advanced features of SystemVerilog remain unimplemented in various
commercial SystemVerilog compilers. In this guide we will use the 2017 standard and stick to simple
modeling features that are universally supported across HDL compilers.

2

SystemVerilog Guide Harvard CS141

3 Gate-level Combinational Modeling

SystemVerilog supports the modeling and design of digital circuits at different abstraction levels. We
will begin with the simplest abstraction level: the gate (or structural) level.

3.1 Modules

In SystemVerilog, the module is the basic building block. Every module defines a set of input and
output ports which specify the input and output signals of the circuit. After the port definitions come
any internal signal definitions, finally followed by concurrent statements which specify the logic of the
circuit.

We will begin with a simple combinational circuit: a 2-1 multiplexer. This logic circuit takes three
inputs, a, b, and sel, and produces one output f . If sel is low, then f = a, otherwise f = b. We can
express this using boolean logic as the expression f = a · sel + b · sel. In SystemVerilog, this could be
described with the following code:

module mux
(

input logic a, b, sel ,
output logic f

);

logic n_sel , f1 , f2;

and g1 (f1 , a, n_sel);
and g2 (f2 , b, sel);
or g3 (f, f1 , f2);
not g4 (n_sel , sel);

endmodule

a bsel

f

Figure 1: 2-1 multiplexer diagram

0

1b

a

sel

f

Figure 2: 2-1 multiplexer symbol

3.1.1 The logic data type

In this example, the inputs and outputs are declared as single bit logic data types. The logic data
type is 4-state and means the signal can store four values: 0, 1, X, or Z. The X value indicates a
“don’t care,” or uninitialized value, and Z indicates a high impedance or “floating” value. This means
that there is nothing driving the wire and should be avoided. The X and Z types are only relevant
in simulation and help to catch design errors in the circuit: X values often indicate a value that was
erroneously uninitialized, and Z values should be avoided in almost all cases because they mean that
the wire’s value was not properly specified and thus in hardware it could be anything.

Other data types exist in SystemVerilog, some synthesizable and some not. The only notable ones are
int and tri (or wire).1 The int data type indicates a 32-bit integer value which does not support X
or Z values. It should not be used for synthesis but can be useful for loop iterators or integer values in
testbenches. The tri/wire type can be driven by multiple signals at once and is useful for modeling
tri-state gates or buses.

1wire and logic actually specify different characteristics of a signal. Using wire or variable specifies the type of the
value (wires may have multiple drivers but unlike variables may not store values), and using logic specifies the data
type (indicating two-state or four-state). If only logic is written, inputs are inferred to wire logic and the outputs to
variable logic.

3

SystemVerilog Guide Harvard CS141

Style guideline: use the logic data type for synthesis unless it is absolutely necessary
to use a different data type.

3.1.2 Module instantiation

Following the port and internal signal declarations, we instantiate four primitive logic gates. SystemVer-
ilog provides primitive logic gates as default modules. Each statement is concurrent in that it would
not matter in what order the modules are instantiated. The result is a hardware circuit, and the order
in which module instantiation statements are made does not matter. It is important to understand this
in order to build working circuits with SystemVerilog.

The syntax for instantiating a module is

module_name instance_name (arg1 , arg2 , ...)

The instance name is helpful when debugging if you have multiple instances of the same module.
Arguments can be provided in two different ways: “pass by position,” and “pass by name”.

In the multiplexer example above, the arguments are passed by position. This is the standard C style
of passing arguments, where each signal is passed into corresponding port in the port ordering at the
definition of the module. The primitive gates always provide the output as the first port, followed by
the inputs.

To instantiate our mux with a = X, b = Y , sel = Z, and f = W , we would write

mux mux_unit (X, Y, Z, W)

In general, pass by position should be avoided in favor of pass by name. If the module is updated to
include new ports, then all instantiations must be updated, and if you forget to update one instance,
then the design error will be very difficult to find.

Instead, pass by name should be used, where each port value is assigned to the port name explicitly, as
shown below.

mux mux_unit (.a(X), .b(Y), .sel(Z), .f(W))

Now we can reorder the ports however we want without needing to update instantiations. The arguments
are tied by name to the proper ports.

If the port name and the signal name being passed into that port have the same name then the
parentheses may be omitted. For example if X was renamed to a and Y was renamed to b we could
perform the same operation as:

mux mux_unit (.a, .b, .sel(Z), .f(W))

To automatically perform this matching the .* syntax may be used. However, it is then hard to know
exactly what ports the module defines and what signals are being passed in.

mux mux_unit (.*, .sel(Z), .f(W))

Style guideline: always use pass by name and avoid using .* so that arguments are
explicitly named.

4

SystemVerilog Guide Harvard CS141

3.1.3 Vectors

We can now use instances of our 1-bit 2-1 multiplexer to create a 2-bit 2-1 multiplexer. This circuit
should take two 2-bit values and a 1-bit select signal and assign the 2-bit output to the correct input
value depending on the select signal. Everything is the same except we are now passing 2-bit values.

0

12b

2a

sel

2
f

Figure 3: 2-bit 2-1 multiplexer symbol

The SystemVerilog code for this circuit is shown below.
module two_bit_mux

(
input logic [1:0] a, b,
input logic sel ,
output logic [1:0] f

);

mux mux_1 (.f(f[0]) , .a(a[0]) , .b(b[0]) , .sel);
mux mux_2 (.f(f[1]) , .a(a[1]) , .b(b[1]) , .sel);

endmodule

We now declare our signals as vectors using the [N:0] notation. This defines the valid indices (including
0) for our vector. Thus the declaration logic [1:0] creates a vector of 2 bits, and logic [N-1:0]
will create one of length N. We can access the ith element by indexing into the vector at i with the [i]
syntax, and we can access bit slices with [i:j] (inclusive).

Exercise

Using the 1-bit 2-1 mux from earlier, write a Sys-
temVerilog module to model the 1-bit 4-to-1 multi-
plexer shown in Figure 4. 00

01

10

11

a

b

c

d

sel

f

Figure 4: 4-1 multiplexer

3.2 Literals

SystemVerilog supports “integer literals” which are constant whole numbers with no fractional element.
They can be expressed in a number of different ways. For simulation or synthesis, the SystemVerilog
compiler must know (or assume) a number of characteristics about each integer literal, regarding its
size, signedness, or base.

Values with no qualifying information, such as the value 5 are interpreted as 32-bit, signed, and decimal.

3.2.1 Binary, decimal, and hexadecimal literals

The base of a value may be specified by an apostrophe followed by a character specifying the base: d
for decimal, h for hexadecimal, b for binary, and o for octal. For example, the value 'b0101 would be

5

SystemVerilog Guide Harvard CS141

interpreted as a 32-bit unsigned binary value. Note that the default is unsigned which is different from
the plain integer literal.

A literal with a base may also contain x or z value, which will fill the digit with that value ('hx is
'bxxxx).

3.2.2 Signed literals

By default, an integer literal with a base is unsigned. An s may be added after the apostrophe to make
the value signed, such as 'sh7FF. The signedness of a value will change how it behaves for certain
operations that will be discussed later.

3.2.3 Sized literals

The size, or bit width, of an integer literal may also be specified by prepending a number before the
apostrophe. This overrides the default bit width of 32 bits, and should be used in almost all cases when
designing hardware. Below are some examples of integer literals with full qualifications:

Value Base Signedness Size
16'd5 Decimal Unsigned 16 bits
4'sb0101 Binary Signed 4 bits
12'h2FF Hexadecimal Unsigned 12 bits

3.2.4 Size mismatch rules

SystemVerilog permits specifying a larger or smaller bit width than the number of bits required to
represent the value. In such a case the upper bits will either be zero-extended (not sign-extended!) or
truncated.

Style guideline: specify the size and base of every literal. Only use the binary and
hexadecimal bases (and in some cases decimal) as these have the most meaning in
digital design.

3.3 Parameters

Parameters provide a way to define a constant value in a module that can be determined at compile-time.
There are two types of parameters:

• parameter – the value of the constant can be specified when the module is instantiated.
• localparam – the value of the constant is internal to the current module.

Parameters are most useful for generalizing the bit width of a module. For example, you can write a
general module for addition using a parameter, and each instance can then specify how many bits the
adder should support. Parameters should be declared with a default value before the port definition,
and may then be referenced anywhere in the module.

A local parameter should be declared within the module, and, as the name suggests, is local to the
module. The following example showcases both types of parameters.

module n_bit_alu
#(

parameter N = 32
)
(

6

SystemVerilog Guide Harvard CS141

input logic [N -1:0] x, y,
input logic [2:0] opcode ,
output logic [N -1:0] s,
output logic cout

)

localparam op_add = 3'b001 ,
op_sub = 3'b010 ,
op_cmpr = 3'b100;

// ...
endmodule

By default when this module is instantiated N will be 32. However we can override this with the
following syntax (for example for an 8 bit alu):

n_bit_alu #(.N(8)) alu_unit (...)

Modules may have multiple parameters which is why we also use pass by name for them (pass by
position is also supported). Parameters are powerful because they allow us to generalize the modules
we write to arbitrary sizes.

Certain literals can be given a size that is determined by context. This is useful for giving certain
signals values even if they have parameterized size.

An unsized single-bit value like '0 is a constant that should expand to N binary zeros as inferred by the
context. The following literals support this form:

'0, '1, 'x, 'z

As we will see in the next section, SystemVerilog supports assignment, so as an example we could use
'0 like so

logic [N -1:0] x;
assign x = '0;

7

SystemVerilog Guide Harvard CS141

4 RT-level Combinational Modeling

The previous section discussed building modules up from simple logic cells. In this section we examine
a more powerful abstraction level called the register-transfer level, where the HDL description of
components such as adders, comparators, or decoders becomes much simpler to express.

4.1 Continuous Assignments

So far we have only seen how to build circuits starting with primitive logic gates and connecting
wires from there. SystemVerilog provides a much more powerful tool for building circuits with the
continuous assignment. A continuous assignment binds an expression to a signal. For example, instead
of instantiating the primitive module for an AND gate, we could use a continuous assignment.

assign c = a & b;

Whenever any value in the expression on the right-hand side changes, the left-hand side is updated.
This is not a one-time assignment but a continuous one. Note that continuous assignments, like
module instantiations, are concurrent statements. This means that the following two pieces of code are
equivalent.

logic a, b, c, d, e;

assign c = a & b
assign e = c | d

logic a, b, c, d, e;

assign e = c | d
assign c = a & b

abd

e

Figure 5: Corresponding circuit

There are many operators that are supported for expressions (not only limited to continuous assignments
as will be discussed later) which are explained below.

4.1.1 Conditional operator

Conditional assignment is shorthand for performing the mux operation from earlier. It has the same
syntax and behavior as the C ternary operator. Here is an equivalent implementation of the mux from
earlier.

module mux
(

input logic a, b, sel ,
output logic f

);

assign f = sel ? b : a;
endmodule

This operator will work with arbitrary vector sizes, and is therefore much more extensible compared to
the method of using module instantiation from before.

8

SystemVerilog Guide Harvard CS141

4.1.2 Bitwise operators

A bitwise operator takes one or two vectors as input and performs some bitwise operation on them,
returning a vector of the same length. For example for the two vectors a = 01101001 and b = 01010011
the result of a & b will be 01000001. The AND operation is performed between each bit of each vector
such that ci = ai · bi. In other words the following two code blocks are equivalent:

assign c[0] = a[0] & b[0];
assign c[1] = a[1] & b[1];
assign c[2] = a[2] & b[2];
assign c[3] = a[3] & b[3];

assign c = a & b;

SystemVerilog supports the following bitwise operators.

Operator Function
a & b bitwise and
a | b bitwise or
a ^ b bitwise xor
~a bitwise not

Notice how we can now model NAND and NOR as ~(a & b) and ~(a | b).

4.1.3 Logical operators

Logical operators are similar to bitwise operators except they deal only with single bit values (true or
false). A bitwise operator with single-bit operands performs the same function as the logical operators.
However logical operators should not be used with multi-bit vectors.

Operator Function
a && b logical and
a || b logical or
!a logical not

Style guideline: use logical operators for scalar values that represent a true/false signal.

SystemVerilog also supports the following two logical operators for simulation only.

Operator Function
a -> b logical implication
a <-> b logical equivalence

These operators cannot be synthesized and some simulators do not support them either. They should
not be used.

4.1.4 Reduction operators

Reduction operators take a single multi-bit vector and output a single bit value. For example &a will
take all the bits in the vector a and pass them into a single AND gate. Thus &a will only be one if a is

9

SystemVerilog Guide Harvard CS141

all ones.

assign b = a[0] & a[1] &
a[2] & a[3];

assign b = &a;

SystemVerilog supports the following reduction operators.

Operator Function
&a reduction and
|a reduction or
^a reduction xor
~^a reduction xnor
~|a reduction nor
~&a reduction nand

4.1.5 Arithmetic operators

So far the operators we have discussed very clearly map to some gate-level circuit and are therefore mostly
shorthand for what we already know. Now we will look at arithmetic operators which SystemVerilog
supports for synthesis. These are much more powerful because creating an adder is not trivial, and yet
you can do so in SystemVerilog with a single continuous assignment.

The arithmetic operators supported by SystemVerilog are shown in the table below

Operator Function
a + b add
a - b subtract
-a unary minus
a * b multiply
a / b divide
a % b modulus
a**b power

Some of these operators, such as modulus, multiply, divide and power, require complex circuits to
implement so care should be taken to ensure that the target FPGA or ASIC will support the operation.
Often FPGAs will include macro cells for some of these operations, but you can check utilization reports
to understand exactly how the operation is being synthesized.

4.1.6 Shift operators

SystemVerilog also has support for the standard shift operators, shown below.

Operator Function
a << b shift left logical
a >> b shift right logical
a >>> b shift right arithmetic

The arithmetical right shift preserves the sign of the value by copying in the sign bit into the newly
available slots from the shift. The logical shift right extends with zeros, and the logical shift left does
as well.

10

SystemVerilog Guide Harvard CS141

4.1.7 Comparison operators

Many comparison operators are also supported. These are explained below.

Operator Function
a == b equal
a != b not equal
a < b less than
a <= b less than or equal
a > b greater than
a >= b greater than or equal

All of these operators are self explanatory. Be careful about the signedness of operands when using the
relational operators (>, <. . .) because this will affect the output.

For equality checking, the operators == and != only compare the values of 0 and 1 for the two inputs,
and they do not check X or Z. This is because at the hardware level X and Z cannot truly be compared
across signals. However, in a testbench it can be useful to compare all four states to check but bugs
with uninitialized or unconnected values. For this purpose, SystemVerilog provides the following two
operators.

Operator Function
a === b a equals b including X and Z values
a !== b a not equals b including X and Z values

Style guideline: the === and !== are not synthesizable. Use == and != in synthesis and
=== and !== for testing.

Alternatively, we can treat X and Z values as “don’t care” values in equality checking. This behavior is
supported by the following operators which are synthesizable.

Operator Function
a ==? b equal with X and Z as “don’t cares”
a !=? b not equal with X and Z as “don’t cares”

4.1.8 Concatenate and replicate operators

The concatenate and replicate operators are useful for extending a vector to a larger size. We may
either concatenate two vectors together, or append a replicated vector (or single bit) to another vector.

Operator Function
{a,b} concatenate vector a with vector b
{n{a,b}} concatenate vector a with vector b and replicate the result n times

For replication, n must be a literal value and cannot be a parameter. With replication, you may also
provide a single vector to be replicated with the syntax n{a}.

These operators are very powerful. For example, we can easily implement sign-extension with the
replication operator:

11

SystemVerilog Guide Harvard CS141

logic [31:0] sign_ext ;
assign sign_ext = {{16{a[15]}} , a};

This sign extends a 16-bit value to a 32-bit value by replicating the most significant bit 16 times and
then concatenating it with the original vector.

4.1.9 More operators

SystemVerilog supports even more operators (such as the pack and unpack operators) but we won’t use
them and they will not be covered here.

4.2 Generate

In some cases it might be useful to instantiate a configurable number of modules where the number
is defined by a parameter. The generate statement is useful for creating this replicated structure.
It has the following general syntax. The generate statement can be used to replicate both module
instantiation and continuous assignments.

generate
genvar [index_variables];
for (...; ...; ...) begin [: optional label]

... concurrent_constructs ...;
end

endgenerate

Consider the use of generate for building an N-bit comparator. Of course, we can use the XNOR
reduction operator ~^, but as an example we could also achieve this using generate and module
instantiation.

module eq_n
#(parameter N=4)
(

input logic [N -1:0] a, b,
output logic eq

);

logic [N -1:0] tmp;

generate
genvar i;
for (i = 0; i < N; i = i + 1)

xnor gen_u (tmp[i], a[i], b[i]);
endgenerate

assign eq = &tmp;
endmodule

12

SystemVerilog Guide Harvard CS141

a0b0a1b1a2b2a3b3

eq

Figure 6: Corresponding circuit for N = 4

Think of generate as automating and generalizing (to a parameter N) copy-paste of module instantiation
or continuous assignment.

4.3 Always block for combinational design

The always block is a powerful tool for modeling circuits with SystemVerilog. It is the central block for
designing sequential logic, but can also be used for designing combinational logic, as will be discussed
in this section. We will examine the always_comb statement in this section and later when designing
sequential circuits, the general form of the always block as well as the always_ff and always_latch
variations.

The always_comb statement takes the form of

always_comb begin
[optional local variable declaration]
... procedural statement ...

end

It can be thought of as continuously looping and executing the internal statements whenever any of
the input signals change. The always_comb block is similar to a multi-line version of the continuous
assign statement. The begin and end keywords are optional if the block only contains one procedural
statement (this is also the case for other constructs that use begin and end). Note that a single
procedural statement may be multiple lines long, for example a case statement counts as a single
procedural statement even though it may contain subblocks of procedural statements within it. Be
careful when omitting the begin and end keywords because you must not forget to add them back if
you decide to add more procedural statements to the block.

There are many possible procedural statements supported by SystemVerilog that may be used within
an always block. Many of them do not have a clear physical counterpart and cannot be synthesized.
Our focus will be limited to the following synthesizable statements:

• Blocking assignment
• Non-blocking assignment (discussed in the sequential section)
• If statement
• Case statement

Note that it is possible that an always block using only these procedural statements still may not be
synthesizable.

Procedural statements are only valid inside procedural blocks – initial or always blocks, and are
“executed” sequentially. The code is synthesized into hardware which must model the sequential
semantics of the procedural statements even if hardware itself is not executed like a sequential program.
In some cases it is not possible to convert the sequential semantics into hardware, resulting in non-
synthesizable always blocks. It is very important to note the difference between the semantics of the
program (the procedural description) and the actual synthesis of it into hardware.

13

SystemVerilog Guide Harvard CS141

A simple add-or-subtract module is shown below using always_comb

module add_or_sub
#(parameter N = 4)
(

input logic [N -1:0] x, y,
input logic add ,
output logic [N -1:0] z;

);

always_comb
if (add)

z = x + y;
else

z = x - y;
endmodule

Whenever x or y changes, the always_comb block is re-evaluated and a new value is assigned to z. In
this simple case we could also use a single continuous assign statement to achieve the same effect:

assign z = add ? x + y : x - y;

Style guideline: use always_comb when designing combinational logic with an always
block. Do not use the general purpose always statement.

We are trying to design combinational logic, which is boolean logic where the output of a function is
solely dependent on its input (there is no internal memory that could affect the output). With an
always block we are not always guaranteed that every input has a well-defined output. Consider the
previous module where the else block is removed:

always_comb
if (add)

z = x + y;

What is the output of the circuit if add is low? It is z, but the value of z depends on the values of x
and y at the last time that add was high. It is possible that x and y have changed since then, but z
must remember its value. This is not combinational behavior and is incorrect (in fact this infers to
a latch, as will be examined later). Since always_comb is used the synthesis compiler should give a
warning. To model combinational logic properly every output must be given a value for every possible
procedural path that could be taken. In this case, for the path where add is low, z (the output) is not
assigned, and thus this is not combinational.

Requirement for combinational logic: every output must be given a value for every path
in an always_comb block.

4.3.1 Blocking assignment

The syntax for the blocking assignment is shown below.

[variable_name] = [expression]; // blocking assignment

In the blocking assignment, the value of the expression is evaluated and immediately assigned to the
variable thus blocking execution of further procedural statements. These are the same semantics as
variable assignment in C.

14

SystemVerilog Guide Harvard CS141

The blocking assignment is used for combinational circuit design and the non-blocking assignment is
used for sequential circuit design. The non-blocking assignment will be discussed in more depth in the
sequential design section, and for now we will only use the blocking assignment.

Style guideline: use blocking assignment only for combinational circuit design.

For example, due to the semantics of blocking assignment, the following code block synthesizes to a
shift by four module:

always_comb begin
logic tmp; // local variable
tmp = in << 1;
tmp = tmp << 1;
tmp = tmp << 2;
out = tmp;

end

<< 4in out

Figure 7: Shift by 4 circuit

Each previous line has an effect on the current value of tmp, thus allowing it to be updated after each
statement. Blocking statements do not behave concurrently. This example is relatively simple so the
compiler may see that this may be implemented as simply out = in << 4, but converting sequential
semantics to hardware like this is not always possible.

4.3.2 If statements

The if statement acts much like an if statement in any other programming language. The general
syntax is

if ([boolean]) begin
... procedural statement ...

end else begin
... procedural statement ...

end

The top branch of the if statement is evaluated if [boolean] is true, and the else branch otherwise.
The else branch may also be omitted.

Let’s now examine how such a statement can be synthesized. The if statement can come in multiple
forms since the else statement is optional and may also contain further if statements (in the form of
else if for example). Synthesis often depends on context but in general an if statement will either
synthesize to a multiplexer or a priority routing network.

Simple if-else: If we have a simple if-else block where the same variable is assigned to in each branch
then this can be synthesized as a multiplexer:

always_comb begin
if (sel)

f = a;
else

f = b;
end

Chained if-else-if: If a chain of if statements is made then this cannot be implemented as a simple
multiplexer since the boolean expressions must be individually evaluated and the first one that is true
must be selected (multiple may be true). This simply means that a series of multiplexers are used to
ensure the correct order of evaluation (called a priority routing network).

15

SystemVerilog Guide Harvard CS141

If some outputs are not assigned for certain paths then some variables need to retain their value and
the always block is no longer combinational. In such cases if statements with no else will synthesize
to latches and if-else statements will synthesize to flip flops. We will see this in further detail in the
sequential logic section.

4.3.3 Case statements

A case statement in SystemVerilog is very similar to a switch statement in C. The general syntax is

case [expr]
[item]: begin

[procedural statement]
[procedural statement]
...

end
[item]: begin

[procedural statement]
[procedural statement]
...

end
[item]: begin

[procedural statement]
[procedural statement]
...

end
endcase

The case statement evaluates the case expression and compares it against each item. If there is a match,
the procedural statements in the matching block are evaluated. A default case may be specified as
well, which will match if no earlier items match the case expression. This is extremely important for
making sure that a case statement synthesizes to combinational logic, as in combinational logic, all
control paths must be accounted for. The begin and end keywords may be omitted if there is only one
procedural statement in the block. Note that if multiple case items match the expression, only the
first one is evaluated. In such a case, a priority routing network will be inferred, much like the chained
if-else-if case from above.

As an example, let’s use a case statement to model an N-bit 4-1 mux. Modeling a 4-1 mux was an
exercise from an earlier section which required using structural SystemVerilog. Now that we know
about RT-level modeling, creating a 4-1 mux will be much easier.

module mux4_1
#(

parameter N = 2
)
(

input logic [N -1:0] a, b, c, d,
input logic [1:0] sel ,
output logic [N -1:0] y

);

always_comb begin
case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;
2'b11: y = d;

endcase

16

SystemVerilog Guide Harvard CS141

end
endmodule

The SystemVerilog synthesizer is able to infer two things from this case statement:

• For every possible value of sel, there is an assignment to y, therefore the module is combinational

• All case items are mutually exclusive (it is not possible for sel to match multiple case items),
therefore the module can be synthesized to a multiplexer rather than a priority routing network.

4.3.4 Unique case

In some cases, the case statement may be written such that the compiler cannot infer the two facts
above, but the programmer is able to guarantee that they are true. In this case, the unique keyword
can be used.

For example, the following 3-1 mux is valid.

always_comb begin
unique case (sel)

2'b00: y = a;
2'b01: y = b;
2'b10: y = c;

endcase
end

The unique modifier informs the synthesis compiler that the case statement is in fact complete, and
that all the cases may be evaluated in parallel (mutually exclusive). If sel takes on the value 2'b11,
anything may be assigned to y.

For simulation, using the unique modifier will enable runtime checks to make sure the guarantees are
not violated.

4.3.5 Case inside

The inside keyword allows a case statement to match wildcard values. For example, the following
circuit will assign y = a if the MSB of sel is set, y = b if the upper two bits of sel are 01, etc.

always_comb begin
case (sel) inside

4'b1 ???: y = a;
4'b01 ??: y = b;
4'b001 ?: y = c;
4'b0001: y = d;
default : y = '0;

endcase
end

Style guideline: in original Verilog, this behavior was implemented with the casex
and casez statements. These are now obsolete, and case ... inside should be used
instead.

17

SystemVerilog Guide Harvard CS141

5 Modeling Sequential Circuits

We have seen how to build combinational circuits using SystemVerilog, where the output of the circuit
depends only on its current inputs. Now we’ll look at building sequential circuits, which are circuits
with memory, where the output now depends on both the inputs and some internal state. Modern
development of sequential circuits follows synchronous design methodology. This means that a common
clock signal controls all global storage elements and data is stored in these elements only at the rising
or falling edge of the clock signal. This allows us to separate the storage components from the rest
of the circuit and greatly simplifies development. This methodology is important for designing and
verifying large and complex digital systems.

In this section we will examine how the always block can be used to model latches, flip flops, and more
complex circuits with state.

5.1 Always block

We will first examine the semantics of the general always block and then discuss how it may be used to
synthesize hardware.

The general syntax for an always block consists of a sensitivity list followed by a sequence of procedural
statements.

always @(... sensitivity list ...) begin [: optional name]
[optional local variable declaration];

... procedural statement ...;
end

The sensitivity list is a list of signals to which the always block responds. When any of these signals
change value, the always block executes. For example, in the following code block, the value of sum is
updated whenever a or b changes.

always @(a, b) begin
sum = a + b;

end

An always block with no sensitivity list will continuously execute acting as an infinite loop (this is
not synthesizable). For hardware synthesis, we are especially interested in two special cases for the
sensitivity list.

The first special case of the sensitivity list uses the posedge or negedge keyword. When this keyword
is placed in front of a signal the always block only responds on the specified edge transition of that
signal. This is critical for modeling sequential circuits such as flip flops that must respond to a rising
clock edge.

The second special case is the * syntax. If the sensitivity list simply consists of a * this means that it
will respond to all input signals that are accessed within it. This form accurately models combinational
logic, as outputs of a combinational circuit should be updated immediately if any of the inputs are
changed (outputs are functions only of their inputs). The syntax always @(*) may be abbreviated
as always @*. In SystemVerilog the syntax always_comb was added specifically for this case. It is
equivalent to always @*2 and should be used instead, as always_comb gives the synthesis compiler
more information about your intentions allowing the compiler to give useful warnings if your always
block is not combinational.

2The always_comb and always @* notations are actually slightly different as always_comb fixes an issue where the @*
notation might not include in the sensitivity list variables that are used in synthesizable functions (a topic not discussed).

18

SystemVerilog Guide Harvard CS141

5.1.1 Non-blocking assignment

The syntax of the non-blocking assignment is

[variable_name] <= [expression]; // non - blocking assignment

In a non-blocking assignment, the evaluated expression is assigned at the end of the always block3, thus
it does not block the execution of further statements. It may be better to think of the non-blocking
assignment as “deferred” and the blocking assignment as “immediate.” Note that two non-blocking
assignments to the same variable will cause a race condition and should be avoided.

Style guideline: use non-blocking assignment for sequential circuit design.

We will examine why non-blocking assignment must be used for sequential circuit design in the next
section.

5.2 The D FF and register

The most fundamental data storage component is the D flip flop. The d signal is sampled on the
rising edge of the clock and stored to the flip flop. A D FF may also contain a reset signal which
resets the storage to 0 and depending on the implementation may be independent of the clock signal
(asynchronous). The function table of the D FF is shown below.

clk q*

0 q
1 q

d

We wish to assign d to q only on the rising edge of the clock so we can model this in SystemVerilog
with an always block that is triggered by posedge clk, and assigns q <= d. SystemVerilog provides
the always_ff keyword, which tells the synthesis compiler your intention to make a flip flop, meaning
warnings will be generated if the always block does not correctly model a flip flop. The always_ff
keyword should be used instead of the plain always.

module d_ff
(

input logic clk ,
input logic d,
output logic q

);

always_ff @(posedge clk)
q <= d;

endmodule

D FF

clk

qd

Figure 8: D Flip Flop

A D FF stores one bit, and a collection of D FFs can be put together, called a register, to store multiple
bits.

3The result of the expression is actually assigned during the non-blocking assignment (NBA) event region, meaning
that all non-blocking assignments from all always blocks for a time unit are pooled and performed at the same time .

19

SystemVerilog Guide Harvard CS141

Style guideline: use always_ff for designing flip flops. Do not use the general purpose
always statement.

5.2.1 More on blocking versus non-blocking

Now one might ask why we had to use a non-blocking assignment. Wouldn’t it be the same with a
blocking assignment? The answer is no and the reason is because in sequential circuits we want to
determine the state of the system after the clock edge from the state before the clock edge.

Suppose we implemented our flip flop with

always_ff @(posedge clk)
q = d;

This block is synthesizable and although the code works properly for a single FF, there will be problems
in a more complex system with interacting flip flops.

Consider a case where we would like two flip flops (or registers) to swap data every clock cycle. The
desired circuit is shown below.

D FF

clk

D FF

clk

Figure 9: Two D FFs which swap data every rising clock edge

With our faulty flip flop we would try to implement this circuit with

always_ff @(posedge clk)
a = b;

always_ff @(posedge clk)
b = a;

At the rising edge of the clock, both always blocks are activated. It is undefined which always block
executes first, but whichever one happens first will perform its blocking assignment before the other.
When the second flip flop tries to store a value, the other flip flop will have already updated and the
input will be incorrect. In fact, the second flip flop’s currently stored value will not change! This code
does not describe the swapping behavior and leads to a race condition where it will behave differently
depending on which always block is executed first.

With a non-blocking assignment, both assignments would evaluate immediately but wait to perform the
storage of the left-hand side until the end of both always blocks, where both assignments will happen
at once, giving the intended swapping behavior.

5.2.2 Variations of the D FF

We often want a little more control over our flip flops, such as a reset signal which causes the flip flop to
store predefined value instead of the input, or an enable signal such that the D FF can only sample an
input when the signal is high. In the case of reset, designs can use either synchronous reset, where the
flip flop is reset at the next clock edge, or asynchronous reset where the flip flop is reset immediately.

20

SystemVerilog Guide Harvard CS141

Asynchronous resets tend to be used in ASICs and synchronous resets in FPGAs. Either can be created
from the vanilla flip flop through the use of clever AND gates, though target boards will often have
them implemented as specific logic cells.

module d_ff_rst
(

input logic clk , rst ,
input logic d,
output logic q

);

always @(posedge clk , posedge rst) begin
if (rst)

q <= '0;
else

q <= d;
end

endmodule

The above SystemVerilog code implements a flip flop with asynchronous reset. This is due to the
posedge rst in the sensitivity list. Remove that from the sensitivity list and it becomes synchronous.

It is also simple to implement a D FF with an enable signal. The only change is that we do not sample
data if the en signal is low.

module d_ff_en
(

input logic clk , rst , en ,
input logic d,
output logic q

);

always_ff @(posedge clk ,
posedge rst) begin

if (rst)
q <= '0;

else if (en)
q <= d;

end
endmodule

D FF
0

1

clk

rst

q

en

d

Figure 10: D FF with synchronous enable.

All the implementations thus far have been for flip flops, but it is very easy to extend them to any size
register. The change is simply to make d and q vectors of the desired bit-width.

5.3 The D Latch

The D Latch is a less commonly used sequential circuit element and its use is a matter of debate. We
will generally avoid using latches, however they are useful to know about especially because they are
easily inferred by the synthesis compiler due to design errors.

Latches, like flip flops, have d and clk as inputs and output a q. However, they are not edge-triggered.
Instead they are transparent when clk is high meaning that q is given d’s value, and opaque otherwise
meaning q remembers its value. The symbol for the D latch is shown below – note the lack of the
triangle on the clock input means that the input is not edge-triggered.

We can model this behavior in SystemVerilog using an always block.

21

SystemVerilog Guide Harvard CS141

always @(clk , d)
if (clk)

q <= d;

Note that the sensitivity list for implementing a latch is the same as for combinational logic. However
since q is not assigned when clk is low, it retains its value and thus a latch is inferred. This is problematic
because synthesis compilers can’t know if a latch was intentional or was part of a misdesigned combina-
tional block. For this reason, instead of the general always block, the always_latch statement should
be used (and always_comb for combinational modeling). As with always_comb, using always_latch
automatically selects the sensitivity list for a latch (which should include every used variable).

module d_latch
(

input logic clk ,
input logic d,
output logic q

);

always_latch
if (clk)

q <= d;
endmodule

D Latch

clk

qd

Figure 11: D Latch

Style guideline: use always_latch when modeling latches. Do not use the general
purpose always statement. Only use latches in your designs when necessary.

Exercise: What circuit does the following code synthesize to?

always @(clk , a, b)
if (clk)

q0 <= a & b;
else

q1 <= a | b;

5.4 General sequential circuit design

In general when designing sequential circuits we want to separate the sequential part from the rest of
the design. We keep some internal state implemented as a register and then by wrapping the register’s
inputs and outputs with combinational logic we can implement more sophisticated circuits. In this
section we introduce the fundamentals for building circuits that have internal state. The following
concepts are expanded upon in the next section into the more powerful and general idea of finite state
machines.

A general block diagram for building sequential circuits is shown below. It consists of the following
parts:

• A state register which stores the internal state of the circuit.

• The next-state logic which is a combinational circuit that determines what the next state of the
system should be given the current inputs and the current state.

• The output logic which is a combinational circuit that determines what the output of the system
should be given the current inputs and the current state.

22

SystemVerilog Guide Harvard CS141

D FF

clk

next-state
logic output

logic

input

output

Figure 12: General sequential circuit block diagram

Our code development will follow this basic block diagram. We will see in the next section that this is
actually an implementation of a Mealy machine.

5.5 Example: Shift register

A shift register is a register with a single bit input. On each rising clock edge the contents of the register
are shifted over and the input bit is placed in the newly available slot. This is useful for performing
serial-to-parallel conversion where a multi-bit value is sent one bit at a time and is loaded into the
register and the individual bits can then be operated on in parallel.

D FFSin D FF D FF D FF. . . Sout

q0 q1 q2 qN−1

clk

Figure 13: Shift register

Shift registers can also be modified to perform parallel-to-serial conversion by adding an N -bit input
and a load control signal. When the load signal is high, the data is loaded (parallel load), otherwise
the contents are shifted as usual. The last bit of the register can be read each clock cycle, effectively
converting the parallel data into serial data.

0

1

Sin
D FF

0

1

q0

D FF

q1

. . .
0

1
D FF

qN−1

Sout

clk

load

d0 d1 dN−1

Figure 14: Shift register with parallel load

Let’s write the SystemVerilog code to model a shift register with support for pausing, shifting, or
performing a parallel load. The function table and SystemVerilog is shown below.

23

SystemVerilog Guide Harvard CS141

ctrl Operation
00 pause
01 shift contents and load s_in
10 load d
11 -

module shift_reg
#(parameter N = 8)
(

input logic clk , rst , s_in ,
input logic [1:0] ctrl ,
input logic [N -1:0] d,
output logic [N -1:0] q,
output logic s_out

);

logic [N -1:0] r_reg , r_next ;

// state register
always_ff @(posedge clk , posedge rst)

if (rst)
r_reg <= '0;

else
r_reg <= r_next ;

// next -state logic
always_comb

unique case (ctrl)
2'b00: r_next = r_reg;
2'b01: r_next = {s_in , r_reg[N -1:1]};
2'b10: r_next = d;

endcase

// output logic
assign q = r_reg;
assign s_out = r_reg [0];

endmodule

Exercise: A universal binary counter is a register with certain operations defined on its contents. It
may count up, down, pause, load data, or clear its data, according to control signals. The control
signals define which operation it should perform on the next rising edge of the clock. The behavior can
be summarized by the following function table:

syn_clr load en up q* Operation
1 - - - 0 synchronous clear
0 1 - - d load
0 0 1 1 q+1 count up
0 0 1 0 q-1 count down
0 0 0 - q pause

The universal binary counter has 7 inputs: clk, rst, syn_clr, load, en, up, and d (N bits), and 1
output q (N bits).

1. Write SystemVerilog code to model this behavior

24

SystemVerilog Guide Harvard CS141

2. Verify its correctness with a testbench.

25

SystemVerilog Guide Harvard CS141

6 Modeling Finite State Machines

A finite state machine (FSM) is a model of computation which can be implemented in hardware as a
sequential circuit. The machine has a set of inputs and outputs as well and can be in one of a set of
states at a time. The current state of the machine and the current input are associated with a transition
which determines the next state of the machine. The output is determined either by the current state
or the combinational of current state and input. If the output is determined solely by the current state
the FSM is called a Moore machine. If the output is determined by both the current state and the
current inputs the FSM is called a Mealy machine.

In practice FSMs primarily serve as controllers of digital systems. For example an FSM is used to
control the operation of a CPU datapath, which is composed of combinational logic and registers to
store intermediate computations.

6.1 State diagrams

We use state diagrams to specify the behavior of an FSM. The state diagram is composed of nodes
(states) and transitional arcs (state transitions). For a Moore machine, output values are placed inside
the state node they are associated with (the output only depends on the state). For a Mealy machine
the output is placed along the transitional arc (the output depends both on the state and the input).

Let’s now construct a finite state machine that detects rising edges. It will have an input signal that
varies with time, and when there is a transition in the signal from low to high, the FSM should output
a pulse for one clock cycle. We can draw the state transition diagram for both Moore and Mealy
implementations of the FSM.

S1
0

S2
1

S3
0

1

1

0

1

0

0

(a) Moore implementation

S1

S2

1/1

0/0

1/0

0/0

(b) Mealy implementation

Figure 15: FSM implementation of a rising-edge detector

In the Moore machine implementation each time a rising edge is detected (a transition from 0 to 1) the
FSM goes to the S2 state for one unit of time and during that state the output is one. For the Mealy
machine we are able to express the behavior using only two states: each time there is a transition from
S1 to S2 we output a 1 along the transition. It is often the case that Mealy machines require fewer
states then Moore machines to express the same behavior. However Mealy machines are often more

26

SystemVerilog Guide Harvard CS141

difficult to think about and as we’ll see soon Mealy machine implementations are asynchronous because
their output may change regardless of the clock. This means that generally a Mealy output will occur
one clock cycle earlier than a Moore output.

6.2 General FSM circuit design

The general block diagram of an FSM is the same as the block diagram we saw last time for the
sequential circuit except for two main differences. First, we now differentiate between “Moore” and
“Mealy” output. Second, the next-state logic will be more complex as we now support arbitrary
transitions between states. Previously, in the simple case of the counter, we just performed the same
operation every time to the value stored in the state register.

D FF

clk

next-state
logic Mealy

output
logic

input

Moore
output
logic

mealy output

moore output

Figure 16: General FSM circuit block diagram

6.3 Enumerations

We will now implement the rising edge detector FSM with SystemVerilog. One useful SystemVerilog
feature for encoding state bits is the enumeration. An enumeration is declared with a list of values and
a name and defines a new type which can hold the given values. An enumeration for the states from
our Moore state machine would be

typedef enum {s1 , s2 , s3} state_t ;

We will not use user-defined types in SystemVerilog very much, but in the few cases we do the type
names should end with the _t suffix. SystemVerilog will automatically assign some encoding to the
enumeration, such as a one-hot encoding or a standard encoding. This decision is made to be optimal
for your circuit. The programmer may also specify the exact bits for each value, for example to force a
one-hot encoding:

typedef enum {s1=3'b100 , s2=3'b010 , s3=3' b001} state_t ;

We will generally avoid doing this and let the synthesis compiler choose what is best.

6.4 FSM code development

With the FSM block diagram in mind we can implement the edge detector in SystemVerilog. After
defining the state type with an enum, we declare two signals: state_reg and state_next. The
state_reg stores the current state of the FSM and it is a register. The state_next signal is determined
by combinational logic and is the input to the state_reg register.

typedef enum {s1 , s2 , s3} state_t ;
state_t state_reg , state_next ;

// state register

27

SystemVerilog Guide Harvard CS141

always_ff @(posedge clk , posedge rst)
if (rst)

state_reg <= zero;
else

state_reg <= state_next ;

Now we just have to determine state_next and the output using combinational logic, and we can do
so using an always_comb block where we check what state we are in and what the input is and set
state_next accordingly. For a Moore machine, setting the output can be done once we have checked
the current state, and for a Mealy machine this is done after checking the current state and the current
input. The full Moore machine implementation is shown below.

module edge_detect_moore
(

input logic clk , rst ,
input logic in ,
output logic out

);

typedef enum {s1 , s2 , s3} state_t ;
state_t state_reg , state_next ;

always_ff @(posedge clk , posedge rst)
if (rst)

state_reg <= s1;
else

state_reg <= state_next ;

always_comb begin
state_next = state_reg ; // default state: the same
out = 1'b0; // default output : 0
unique case (state_reg)

s1:
if (in)

state_next = s2;
s2: begin

out = 1'b1;
if (in)

state_next = s3;
else

state_next = s1;
end
s3:

if (~in)
state_next = s1;

endcase
end

endmodule

Note that default values are given to out and state_next in the always_comb block. This is a good
trick to reduce the amount of code to write. Every signal is assigned for every path (so the block is
combinational) but now we only have to assign to out and state_next when their value should be
different from the default. Using blocking assignment allows overwriting like this.

Exercise: Write the SystemVerilog code for the Mealy machine implementation of the rising edge
detector.

28

SystemVerilog Guide Harvard CS141

6.5 Mealy versus Moore

Now that we have hardware implementations of Moore and Mealy machines for the rising edge detector
we can take a closer look at the differences in timing between the two. The main difference in timing is
that the Moore machine output only changes on the rising edge of the clock while the Mealy machine
output may change at any time. This means that the Moore output may change up to one clock cycle
after a Mealy output for the same FSM. This difference is illustrated in the timing diagram below.

clk

in

moore state
S1 S2 S3 S1

moore out

mealy state
S1 S2 S1

mealy out

Figure 17: FSM timing diagram

The Mealy output changes immediately and it requires fewer states, but the width of its pulse depends
on when the rising edge occurred with respect to the clock signal which is not ideal. The choice of
Moore versus Mealy should be made within the context of the design, but generally Moore machines
are more commonly used.

Exercise: Suppose there is an intersection between street A and street B. The inputs TA and TB

specify if there is traffic on streets A and B respectively, and the outputs of the FSM LA and LB give
the values for the lights on each street (red, yellow, or green). Initially, the light on street A is green
and the light on street B is red. LA remains green until there is no more traffic, at which point it
should become yellow for 5 seconds and then go to red, while LB goes to green. LB should then remain
green until there is no more traffic on street B, at which point the lights should swap again.

1. Draw the state transition diagram for a Moore machine implementation of this FSM.

2. Implement the FSM in SystemVerilog and verify its operation on an FPGA. What extra consider-
ations need to be taken into account to ensure that the yellow light lasts 5 seconds?

29

SystemVerilog Guide Harvard CS141

7 Modeling Memory

It is often necessary for circuits to have access to more complex forms of storage than simply flip flops
and registers. In this section we will discuss how to model register files which are addressable arrays of
registers, as well as different kinds of memories which utilize the denser block SRAM macro cells on
the FPGA.

7.1 Register file

A register file is simply a collection of registers with a wrapping circuit that allows reading or writing
certain registers according to a set of addresses. Fundamentally, memory in SystemVerilog can be
modeled with a two dimensional array declared as

logic [N -1:0] mem [0:M -1];

This declares a variable mem which is a M-by-N array of data. In certain situations such as for modeling
memory, SystemVerilog has support for dynamic indexing where the index into an array may be a
signal (i.e. not known at compile-time). This makes implementing memory very simple.

FIGURE

// 32 x32 register file by default
module reg_file

#(
parameter DATA_N = 32,

SIZE = 32
)
(

input logic clk , wr_en ,
input logic [$clog2 (SIZE) -1:0] w_addr , r0_addr , r1_addr ,
input logic [DATA_N -1:0] w_data
output logic [DATA_N -1] r0_data , r1_data

)

logic [DATA_N -1:0] regs [0: SIZE -1];

always_ff @(posedge clk)
if (wr_en)

regs[w_addr] <= w_data ;

assign r0_data = regs[r0_addr];
assign r1_data = regs[r1_addr];

endmodule

This code implements a register file with one write port and two read ports. When wr_en is high,
w_data is written to the register specified by w_addr. In addition, r0_data and r1_data will contain
the data of the two registers specified by the read addresses r0_addr and r1_addr. Note that the
dynamic indexing will need to infer decoding and multiplexing logic. This is not trivial and should only
be used when the synthesis compiler is able to recognize the pattern and infer it correctly. We also
assign outputs asynchronously so the output read data will change as soon as the input read address
changes, ignoring clock edges. This is a key difference between a register file and RAM (RAM must be
synchronous).

30

SystemVerilog Guide Harvard CS141

7.2 RAM

Flip flops and registers are very fast and flexible but are not very dense compared to other forms of
memory such as SRAM or DRAM. When dense storage is needed it is far better to use RAM modules.
FPGA devices often provide “block RAM” which is an embedded SRAM memory implemented in a
macro cell. For small memory implementations logic cells organized as distributed SRAM may also be
used instead of the larger block RAM. Using these macro cells involves writing SystemVerilog code
according to a template that is correctly inferred by the synthesis compiler. In order to make sure that
these templates are correctly inferred, RAM implementations should not be mixed with the rest of the
design and should instead be implemented in a module on its own and then structurally instantiated
where necessary.

7.2.1 Single-port RAM

The simplest implementation of a memory is a synchronous single-port RAM. In this template we have
a single port that can be used to read or write.

module single_port_ram
#(

parameter DATA_N = 32,
SIZE = 128

)
(

input logic clk ,
input logic wr_en ,
input logic [$clog2 (SIZE) -1:0] addr ,
input logic [DATA_N -1:0] w_data ,
output logic [DATA_N -1:0] r_data ,

);

logic [DATA_N -1:0] ram [0: SIZE -1];

always_ff @(posedge clk) begin
if (wr_en)

ram[addr] <= w_data ;

r_data <= ram[addr];
end

endmodule

The code above implements a single-port memory with 128 blocks of 32 bits each. Note that unlike
in the register file the r_data signal is assigned inside the always block. This makes the memory
synchronous as the output is only changed on a clock edge, and therefore the synthesis compiler can
compile this design to denser RAM modules.

7.2.2 Dual-port RAM

A more general RAM is shown below. This is a synchronous dual-port memory. This is the same as
earlier except now the RAM has two ports, which can each be used to read or write.

module dual_port_ram
#(

parameter DATA_N = 32,
SIZE = 128

)
(

31

SystemVerilog Guide Harvard CS141

input logic clk ,
input logic we0 , we1 ,
input logic [$clog2 (SIZE) -1:0] addr0 , addr1 ,
input logic [DATA_N -1:0] w0_data , w1_data ,
output logic [DATA_N -1:0] r0_data , r1_data

);

logic [DATA_N :0] ram [0: SIZE -1];

always_ff @(posedge clk) begin
if (wr0)

ram[addr] <= w0_data ;

r0_data <= ram[addr];
end

always_ff @(posedge clk) begin
if (wr1)

ram[addr] <= w1_data ;

r1_data <= ram[addr];
end

endmodule

7.2.3 Pre-loading data

If desired, data can be pre-loaded into the RAM using the $readmemh or $readmemb functions. These
functions are system tasks which read a pattern file at compile-time and embed the data into the
bitstream to be loaded into the memory when the system starts up. The pattern file is written as a text
file with each line containing the data for the specified address. The $readmemh and $readmemb tasks
read hexadecimal and binary data respectively. An @ token followed by a hexadecimal address may
precede a line and instructs the following patterns to be loaded starting at that address. An example
of a hexadecimal pattern file is

00642824
@A7 // load the next pattern at 0xA7
20020005
2003000 c
2067 fff7
// ...
ac020054

Both readmem tasks take the same arguments:

• $readmemh("file", array, start_addr, end_addr): read the hexadecimal pattern file file
into the memory called array starting at start_addr and ending at end_addr. The address
arguments are optional.

• $readmemb("file", array, start_addr, end_addr): read the binary pattern file file into
the memory called array starting at start_addr and ending at end_addr. The address arguments
are optional.

To actually perform the read, we place the function call in an initial block within the module:

initial
$readmemh ("mem.txt", mem);

32

SystemVerilog Guide Harvard CS141

Initial blocks are usually not synthesizable but in this case synthesis compilers will recognize the
template and infer the corresponding load into the memory correctly.

7.3 Additional considerations

It is impressively easy to model memory with SystemVerilog because the synthesis compiler is able to
recognize templates for us. However, care must be taken to make sure synthesis is correct. For example
creating a tri-port memory is not as simple as adding another port. The memories on the FPGA device
are dual-port so the synthesis compiler cannot map the design to the memories like it can for the dual
or single port models. Additionally, BRAM modules have a minimum capacity of 16K and thus will
not be inferred unless the memory is large enough (normal logic cells will be used instead). Usually the
synthesis compiler reports can be checked to see how the memory was inferred.

In simulation, a memory array may also take up twice as much virtual memory as in hardware because
the logic data type is four-state. In certain cases where large memories need to be simulated it is
helpful to use the bit data type instead which is two-state. Be careful when using the bit data type
though as uninitialized values will be 0 instead of X and this may hide bugs.

33

SystemVerilog Guide Harvard CS141

8 FPGA Devices

The information here is only provided so you understand a little more what kind of technology you are
working with when using an FPGA. You do not need to understand it in any depth in order to write
hardware for FPGAs and only a small overview is given here.

An FPGA or field-programmable gate array is an integrated circuit (IC) which is useful because it can
be reconfigured without needing to refabricate the device (programmable “in the field”). Manufacturing
a chip is very time consuming and expensive so it is important to make sure that the design will work
before doing so. Simulation software is powerful but implementation on an FPGA shows that the
design works in real hardware. Additionally, while an FPGA incurs some overhead in processing power
compared to a custom IC, FPGAs can often be used to greatly speed up certain workloads at a fraction
of the cost of manufacturing a chip.

FPGA devices are made up of logic cells, macro cells, and programmable switches.

• A logic cell usually contains a small combinational circuit called a LUT (lookup table) and a D
flip flop. The LUT is a small memory which can be used to implement any n-input combinational
logic function The output of the LUT can then be the output of the logic cell, or may be sampled
by a D flip flop to implement sequential circuit elements. There is also a small 1-bit memory cell
to determine the select signal for the multiplexer. When a program is loaded onto the FPGA, the
correct memories are programmed by sending the data along the global data bus and correctly
controlling the write enable (wr) signals for all memories.

LUT

a
b
c
d

wr

D FF

clk

0

1

1-bit memwr

global data bus

output

Figure 18: FPGA logic cell

• Using purely logic cells is possible but a lot of overhead is incurred compared to creating application
specific (and non-reconfigurable) hardware. To ease this overhead, circuits for common operations
are usually provided in the form of macro cells. These are designed at the transistor level and are
meant to complement the logic cells. Depending on the FPGA device, these may include memory
blocks, multipliers, clock management circuits, and more. Some FPGA devices even come with
prefabricated CPUs.

• The programmable switches connect all the different cells in the FPGA according to the pro-
grammed design. All the cells are connected in a grid with programmable switches at each
junction.

34

SystemVerilog Guide Harvard CS141

S S S S S

S S S S S

S S S S S

S S S S S

S S S S S

LC LC LC LC

LC LC LC LC

LC LC LC LC

LC LC LC LC

Figure 19: FPGA layout where S means switch and LC means logic cell

Each logic cell is connected to the neighboring wires by multiplexers on the left side to determine the
inputs (a, b, c, d) and tri-state gates on the right so that the proper wires can be used to route the
output of the cell.

35

SystemVerilog Guide Harvard CS141

9 Development for the Nexys A7

This section provides information for actually applying the SystemVerilog concepts learned previously
to run hardware on an FPGA device. This guide is specifically geared towards the Nexys A7 FPGA
board because it is a good beginner board with a variety of peripherals for more advanced projects. The
information in this section should also be applicable to other FPGA boards although the development
flow outlined below is tighly coupled with Xilinx Vivado so using non-Xilinx boards would require
significant modification.

9.1 Overview of the Nexys A7

The Nexys A7 is a basic general-purpose FPGA board designed for use in education. It features a
Xilinx Artix-7 FPGA unit surrounded by many peripherals such as DDR memory, an ethernet port, a
VGA port, a temperature sensor, and accelerometer, a microphone, and more. The board also has a
great built-in eight-digit seven-segment display. This, along with the 16 switches and 16 LEDs, make it
easy to view feedback from simple designs. The Nexys A7 also supports soft core processors such as
the Xilinx MicroBlaze, and with all these built-in peripherals this makes building a simple SoC design
easier. The board can be powered by USB (no need to find an outlet) and can run at clock speeds of
450 Mhz.

Figure 20: Nexys A7 features

Number Component Number Component
1 Power jack 16 JTAG port for (optional) external cable
2 Power switch 17 Tri-color (RGB) LEDs
3 USB host connector 18 Slide switches (16)
4 PIC24 programming port 19 LEDs (16)
5 Ethernet connector 20 Power supply test point(s)
6 FPGA programming done LED 21 Eight digit seven-segment display
7 VGA connector 22 Microphone
8 Audio connector 23 External configuration jumper (SD / USB)
9 Programming mode jumper 24 MicroSD card slot
10 Analog signal Pmod port (XADC) 25 Shared UART/ JTAG USB port

36

SystemVerilog Guide Harvard CS141

Number Component Number Component
11 FPGA configuration reset button 26 Power select jumper and battery header
12 CPU reset button (soft cores) 27 Power LED
13 Five pushbuttons 28 Xilinx Artix-7 FPGA
14 Pmod ports 29 DDR2 memory
15 Temperature sensor

The Artix-7 FPGA has the following features:

Component Nexys A7-100T
Look-up tables (LUTs) 63,400
Flip-flops 126,800
Block RAM 1,188 Kb
DSP slices 240
Clock management tiles 6

For more information, visit the Digilent Nexys A7 Reference Manual here.

9.2 Top modules and constraint files

The top module of a SystemVerilog project is the module that will be instantiated onto the FPGA
board. When the module is instantiated the input and output ports are connected according the
mappings specified by the constraint file.

Constraint files map specific I/O pins on the FPGA board to SystemVerilog variable names. Constraint
files are usually provided by the FPGA distributor or can be found online. For example, the following
excerpt from the Nexys A7 constraint file maps a 100 Mhz clock to the clk port of the top module, as
well as some of the board’s LEDs and switches:

// clock
set_property -dict { PACKAGE_PIN E3 IOSTANDARD LVCMOS33 }

[get_ports clk]
create_clock -period 10.000 -name sys_clk_pin -waveform {0.000 5.000}

-add [get_ports clk]

// four switches
set_property -dict { PACKAGE_PIN J15 IOSTANDARD LVCMOS33 }

[get_ports {sw [0]}]
set_property -dict { PACKAGE_PIN L16 IOSTANDARD LVCMOS33 }

[get_ports {sw [1]}]
set_property -dict { PACKAGE_PIN M13 IOSTANDARD LVCMOS33 }

[get_ports {sw [2]}]
set_property -dict { PACKAGE_PIN R15 IOSTANDARD LVCMOS33 }

[get_ports {sw [3]}]

// four LEDs
set_property -dict { PACKAGE_PIN H17 IOSTANDARD LVCMOS33 }

[get_ports {led [0]}]
set_property -dict { PACKAGE_PIN K15 IOSTANDARD LVCMOS33 }

[get_ports {led [1]}]
set_property -dict { PACKAGE_PIN J13 IOSTANDARD LVCMOS33 }

[get_ports {led [2]}]
set_property -dict { PACKAGE_PIN N14 IOSTANDARD LVCMOS33 }

[get_ports {led [3]}]

37

https://reference.digilentinc.com/reference/programmable-logic/nexys-a7/reference-manual

SystemVerilog Guide Harvard CS141

In the top module we define

module design_top
(

input logic clk ,
input logic [3:0] sw ,
output logic [3:0] led

);

// instantiate design using clk , sw , and led ...
endmodule

Make sure to select the top module with the “set as top” option in Vivado so that it is used for synthesis.
The filename should be bold in the navigator view when this is the case. Additionally, in the simulation
sources, make sure to select your testbench as the top module because that is the file you would like to
use for behavioral simulation (the synthesis top module should not be used for obvious reasons).

9.3 Vivado project organization

Vivado is very useful because it provides an integrated development environment for working on a
SystemVerilog project, simulating the code, synthesizing and uploading to the FPGA all with a fairly
intuitive GUI. However it is notoriously difficult to use with version control. Vivado supports two
design flows

• Project mode: Vivado controls the project files, automatically creates reports during synthesis,
displays simulation results easily, and provides the flow navigator window which allows the
programmer to easily switch between synthesis, simulation, and the hardware manager for
programming the board. Unfortunately since Vivado controls the files, it is difficult to set up
version control for this mode.

• Non-project mode: Vivado commands for synthesis, simulation, and programming are executed
via TCL manually at the command line. This gives the programmer full control over the files and
allows for direct access to the project files and easy version control. However, everything must be
done manually which can be difficult and warnings and errors are hard to spot at the command
line. Logic simulation is especially difficult to run from the command line, and Vivado must be
booted up on every simulation run.

We will attempt to use the best of both worlds by using TCL scripts to generate projects on the fly from
SystemVerilog files in version control. The projects can be placed in the .gitignore and regenerated
when the repository is cloned. Synthesis and simulation can be accessed from inside project mode and
the files can be edited in the Vivado IDE or in another text editor. A project will contain the following
files

• The constraint directory contains a .xdc file which is the constraint file for the project.
• The hdl directory contains all the SystemVerilog source files
• The tcl directory contains TCL scripts for generating, refreshing, and opening the Vivado project

associated with the rest of the source code.
– make.tcl: generates the Vivado project in the build directory and adds all hdl and constraint

files as relative files (source files are not copied into the project).
– refresh.tcl: refreshes the project files if any new SystemVerilog files are added to the hdl

directory.
– open.tcl: opens the project with the Vivado IDE.
– synth.tcl: synthesizes the design from the command line, and creates a bitstream and

utilization report. These files are placed in synth_output/.
– upload.tcl: uploads the bitstream in synth_output/ (generated by synth.tcl) to the

FPGA device.

38

SystemVerilog Guide Harvard CS141

• One bash script: tcl.sh which will run the corresponding TCL scripts with Vivado in batch TCL
mode. It must be provided one argument, which is the name of the TCL script to run (without
the extension). For example ./tcl.sh make will run the make.tcl script.

For example the mux example project has the following structure:

constraint /
Nexys_A7 .xdc

hdl/
mux_top .sv
mux.sv
mux_tb .sv

tcl/
make.tcl
open.tcl
refresh .tcl
synth.tcl
upload .tcl

tcl.sh
build/ # This directory is created by running ./ tcl.sh make

The build/ directory (and the .Xil/ directory) should be placed in the .gitignore for the repository.
All other files should be committed to Git.

Files can be edited at the command line or in Vivado. Once a project is generated it can be opened
with ./tcl.sh open and from there can be simulated, synthesized, or uploaded to the FPGA board.
If you would like to delete the project simply delete the build/ directory.

9.4 Editing code with Vivado

After initially downloading the project zip file you should see a structure like the one shown above for
the mux project (without the build/ directory). You may choose to edit the HDL source files with a
text editor rather than Vivado, though the following instructions will be useful regardless as Vivado is
necessary for simulating. To create a Vivado project run the tcl.sh script at the command line

./ tcl.sh make

This should generate a build/ directory containing a Xilinx Vivado project where the files in it are
linked to the files in the hdl folder (and the constraint file). Now that the project is created you will
not need to run the make script again. If you ever create new files in the hdl directory, to add them
to the project use the refresh script by running ./tcl.sh refresh. You can also remove the build
folder and regenerate the project with the make script. To remove files from the project delete them
from inside Vivado and then remove them from hdl/ using the command line.

To open the project run

./ tcl.sh open

Vivado will open in the background (it can be quite slow so give it time) and you should see the
following:

39

SystemVerilog Guide Harvard CS141

Figure 21: Vivado development window

In the sources panel you should see two folders: “Design Sources” and “Simulation Sources.” These
should contain the same SystemVerilog files, however you will want their top modules to be different.
The top module is the module contained in the bolded file. In the picture above, mux_top is the top
module for design and mux_tb is the top module for simulation. This is correct since *_top should be
used for synthesis (“Design Sources”) and *_tb should be used for simulation (when you click “Simulate”
the top module in “Simulation Sources” will be run). It is likely that the incorrect files are the top
modules when you first open the project. To fix this right click the file you want to be the top module
and select the “Set as Top” option.

Double click files in the “Sources” panel to open them in the editor. Errors and warnings should be
shown in the editor as you type or displayed in the console at the bottom of the screen.

9.5 Simulation

To run simulation, click on “Run Simulation” in the flow navigator on the left side. Choose “Run
Behavioral Simulation.” This will simulate your design for 10 microseconds or until a $finish statement
is reached in the testbench. If a $finish statement is reached, the code and line where it is located
will be shown. Otherwise a waveform at the current time will be displayed. Any messages that
were displayed using $display or $monitor will be shown in the console at the bottom of the screen.
Hopefully you don’t see any errors displayed there for the example project. To view the waveform after
a $finish statement has been reached, select the “Untitled” tab. Select “Zoom fit” to fit the entire
waveform to the view.

40

SystemVerilog Guide Harvard CS141

Figure 22: Simulator waveform viewer

You can also select a signal in the waveform viewer (such as a which is selected in the picture) and
press the arrow keys to navigate to every place where that signal changes. Notice that we are only able
to view signals that are exposed to the testbench. The internal mux signals f1, f2, and n_sel are not
viewable. To view internal signals, select the module to inspect from the “Scope” panel on the left. We
want to view signals internal to uut (here is where module instantiation names are useful) so select it
after dropping down mux_tb. In the “Objects” panel you should now see the internal signals. To view
them in the waveform viewer select them and drag them to the right. Then click “Relaunch simulation”
which is the rightmost option in the upper toolbar (it is an arrow pointing clockwise in a circle). The
waveform should then be populated with the selected internal signals.

41

SystemVerilog Guide Harvard CS141

Figure 23: Simulator waveform viewer with internal signals

Feel free to play around and get used to the different options. You can also close the “Scopes” and
“Objects” panels to give more space for the waveform. You can always get them back by navigating to
Layout->Default Layout. You may close the simulator with the blue X when you are done, or you
can leave the simulator open and click “Relaunch simulation” every time you change your SystemVerilog
code and want to re-simulate.

9.6 Synthesis and uploading to the FPGA

To synthesize your design click “Generate Bitstream” in the flow navigator. This will probably ask
you to run synthesis and implementation as well and you should select “Yes.” In Vivado synthesis
has a very specific meaning within the overall chip creation steps. When I say “synthesis” I mean
generally turning the code into hardware, but for Vivado “synthesis” means specifically turning the
SystemVerilog code into a list of logic gates. Then Vivado must perform many more steps to actually
turn the list of logic gates into hardware (the logic gates need to be placed into certain logic cells and
the wires between them routed correctly, among other steps). Finally the bitstream must be generated
which can be uploaded to the FPGA to actually set up the design in hardware.

Generating the bitstream (and running all the previous steps) should take about 1-2 minutes and you
can track progress in the console area under “Design Runs” or in the top right corner of Vivado. Opening
the “Project Summary” tab will also show various reports about how the design was synthesized.

Once the bitstream is generated, you can upload to the FPGA by opening the hardware manager. Make
sure that the FPGA is turned on and connected by USB to your computer (you should plug the cable
into the “Prog/UART” microUSB slot on the board). Also make sure that jumper JP1 (component 9
on the diagram from earlier) on the FPGA board is in JTAG mode4:

4boards we hand out will likely already be in JTAG mode, but brand new boards generally come in SPI Flash mode

42

SystemVerilog Guide Harvard CS141

Figure 24: JP1 must be in JTAG mode to program the Nexys A7

Now in Vivado click “Open Hardware Manager” and select “Open Target” and then “Auto Connect.”
Then you can click “Program Device” and the design should be viewable on the board.

9.7 Synthesis with TCL scripts

In the TCL directory we also provide scripts for synthesizing and uploading the bitstream at the
command line. The synthesis script can also be edited to generate timing, power, and utilization reports
(by default it only generates a utilization report). These scripts are called synth.tcl and upload.tcl.
The synth.tcl script will generate an additional directory called synth_output which will contain the
generated bitstream and any reports or design checkpoints that were created. This directory should be
ignored in version control. These tcl scripts can be run with the tcl.sh script

./ tcl.sh synth

After running this command you should see mux.bit and post_route_util.rpt in the synth_output
folder.

To upload to the board, you can then run

./ tcl.sh upload

Note that the upload.tcl script requires that the bitstream be located in synth_output/ so make
sure that you ran synthesis using synth.tcl and not in the Vivado IDE.

43

SystemVerilog Guide Harvard CS141

10 Sources and further reading

1. FPGA Prototyping by SystemVerilog Examples by Pong Chu.

This guide is most inspired by this excellent textbook by Pong Chu. Chu expands on many of the
concepts introduced in this guide by providing larger design projects. In the second part of his book,
Chu goes beyond the concepts learned here to design a full SoC (System on Chip) system for the
Nexys A7 that uses the Xilinx MicroBlaze soft-core processor to control many of the peripheral devices.
Chu provides the SystemVerilog components and C++ drivers to control them for many subsystems
(video, audio, UART, temperature sensor, . . .), along with great ideas for further projects. Many of the
examples in this guide are adopted from this source, especially for the FSM and memory sections.

2. RTL Modeling with SystemVerilog for Simulation and Synthesis by Stuart Sutherland.

Stuart Sutherland provides a very in-depth view of SystemVerilog’s features for RTL synthesis. He
goes into much more detail than this guide in features such as synthesizeable functions, user-defined
types such as structs, packing and unpacking and more. SystemVerilog is a very large language with
many features and quircks and Sutherland delves into great detail about the language. His book serves
excellently as a SystemVerilog reference. Many of the style guidelines are drawn from this source along
with many of the SystemVerilog details.

3. Logic Design and Verification Using SystemVerilog by Donald Thomas.

This book provides a nice overview of SystemVerilog and then dives into more of the testbench and
simulation features of the language. If you are interested in more of SystemVerilog’s testbench and
verification features then this book is worth looking into. I would also recommend SystemVerilog for
Verification by Chris Spear, though I haven’t read it myself.

4. Digital Design and Computer Architecture by David Harris and Sarah Harris

Unlike the Harris&Harris book, this guide doesn’t touch much on the theory of digital design, mostly
sticking to how to apply digital design principles to real hardware using SystemVerilog. DDCA provides
a great introduction to digital design, delving into topics like arithmetic circuits, sequential timing,
boolean algebra and more. In the second half it also provides a nice overview of computer architecture,
outlining how to implement a simple MIPS processor. SystemVerilog examples are used along the way,
though the HDL is not the focus of the book.

5. CMOS VLSI Design by Neil Weste and David Harris

This book really goes into the details of digital design and how integrated circuits are actually fabricated.
In the first part It discusses transistor details such as non-idealities as well as how they are fabricated
(layout and lithography). More accurate models for measuring delay, power, and area are also discussed.
In the later chapters more advanced arithmetic, sequential, memory, and special-purpose circuits are
examined. Some of the FPGA information in this guide is drawn from this source.

6. The IEEE SystemVerilog specification.

The SystemVerilog specification provides all the detail you might want about SystemVerilog though it
can be difficult to read. The book above by Stuart Sutherland should provide enough information for
most use-cases and is a much easier read with better explanations.

44

	Introduction
	A Brief History
	Gate-level Combinational Modeling
	Modules
	Literals
	Parameters

	RT-level Combinational Modeling
	Continuous Assignments
	Generate
	Always block for combinational design

	Modeling Sequential Circuits
	Always block
	The D FF and register
	The D Latch
	General sequential circuit design
	Example: Shift register

	Modeling Finite State Machines
	State diagrams
	General FSM circuit design
	Enumerations
	FSM code development
	Mealy versus Moore

	Modeling Memory
	Register file
	RAM
	Additional considerations

	FPGA Devices
	Development for the Nexys A7
	Overview of the Nexys A7
	Top modules and constraint files
	Vivado project organization
	Editing code with Vivado
	Simulation
	Synthesis and uploading to the FPGA
	Synthesis with TCL scripts

	Sources and further reading

