
Deterministic Client: Enforcing Determinism on Untrusted Machine Code

Zachary Yedidia
Stanford University

Geoffrey Ramseyer
Stanford University and

Stellar Development Foundation

David Mazières
Stanford University

Abstract
This paper presents Deterministic Client (DeCl), a software-
based sandboxing system for enforcing deterministic behavior
on untrusted machine code, either x86-64 or Arm64. DeCl
adapts techniques from Software Fault Isolation (SFI) tradi-
tionally used to guarantee memory isolation to instead en-
force the stronger property of determinism. By using a simple
and efficient machine code verifier that can guarantee that a
program behaves deterministically, DeCl does not rely on a
trusted compiler/interpreter for correctness. This allows the
use of LLVM without compromising the size of the trusted
code base. We also describe how to implement two efficient
metering mechanisms that enforce deterministic preemption
of sandboxed programs, and how DeCl can be implemented
in combination with traditional software-based isolation, by
making the sandboxed code position-oblivious. DeCl is able
to combine and improve upon the benefits of both interpreters
and JIT compilers at once, with low CPU overhead, fast
startup time, and strong security via a small trusted code base.
We evaluate DeCl’s effectiveness on general-purpose CPU
benchmarks, as well as in an application-specific context by
integrating with the Groundhog smart contract engine, and
using DeCl for zero-knowledge-proof verification.

1 Introduction

Program determinism is essential for executing smart con-
tracts correctly. Smart contracts are programs that are up-
loaded by completely untrusted parties, and yet must be guar-
anteed to perform the same set of operations every time they
are run by an honest node. Since smart contract programs in-
creasingly form the backbone of digital currency systems, it is
important for them to be performant. Existing approaches to
smart contract sandboxing are language-based: they define an
intermediate language (IL) with deterministic semantics, such
as WebAssembly or EVM bytecode, and then execute the lan-
guage via a trusted interpreter or just-in-time (JIT) compiler.
Unlike with sandboxes that enforce memory isolation, this

Enforcement Memory isolation Determinism

Language
WebAssembly,
eBPF,
JavaScript, . . .

WebAssembly,
eBPF,
EVM Bytecode, . . .

Binary analysis
LFI, NaCl,
PittSFIeld, . . . DeCl

Hardware
Pagetables,
Segmentation –

Table 1: Approaches that enforce memory isolation and deter-
minism via hardware-based or software-based methods.

language-based approach is the only existing method for en-
forcing determinism in an adversarial setting. Approaches for
enforcing determinism must necessarily be software-based, as
commodity hardware does not provide sufficient mechanisms
for hardware-based enforcement.1

This paper introduces Deterministic Client (DeCl), a new
software-based approach to enforcing determinism. By adapt-
ing binary analysis techniques from Software Fault Isolation
(SFI) [36, 50, 54, 57], we design a machine code analyzer that
can determine if a program is part of a deterministic subset
of either x86-64 or Arm64. If so, the program is guaranteed
to be deterministic, and can be directly run as native code,
without any intermediate translation step. This design signifi-
cantly reduces runtime CPU overhead and startup latency, and
removes the need for a trusted translator. Highly optimizing
ahead-of-time compilers such as LLVM can be used without
needing to trust them. In order to generate programs that can
pass verification, we develop a program rewriter that oper-
ates on assembly files, allowing us to rewrite the output of
LLVM/GCC and therefore support many existing languages
and compiler optimizations.

Binary analysis techniques from SFI are well-known for
enforcing memory isolation, but this is the first work to apply

1Both x86-64 and Arm64 have cases of instructions that cause unpre-
dictable behavior that is not trapped by hardware. Existing hardware cannot
prevent these instructions from executing.

Compile Rewrite
.s.c .s

Assemble+Link
.elf Verify

Run (native)

DeCl

Figure 1: The DeCl compilation flow. Determinism proper-
ties are enforced directly on the machine code output of a
compiler. In order to produce binaries that pass verification,
a rewriter is used during compilation. Non-bold steps use
existing compiler infrastructure.

them to determinism. Table 1 summarizes existing sandbox-
ing approaches for both memory isolation and determinism,
and Figure 1 shows the overall architecture of DeCl, which is
typical of SFI systems. We describe three main components:

1. Deterministic instruction enforcement: programs that
attempt to use non-deterministic instructions must be re-
jected. We describe cases of non-determinism in x86-64
and Arm64, along with how to guarantee their absence.

2. Deterministic metering: programs cannot be permitted
to run indefinitely. However, a traditional timer interrupt
on its own may cause the program to terminate after
different side effects each time the program runs. We
describe two mechanisms for deterministic preemption.

3. Integration with software-based memory isolation: DeCl
can be used in conjunction with any memory isolation
mechanism (hardware-based or software-based). We de-
scribe additional changes that are necessary in order to
use DeCl with LFI [57], a software-based sandbox where
all sandboxes share an address space. This makes it pos-
sible to use DeCl sandboxes within a Linux process and
enables fast sandbox startup times.

We evaluate DeCl’s performance in terms of CPU over-
head and startup time. We measure both general benchmarks
(SPEC 2017) and benchmarks specific to smart contracts.
With both metering and software-based isolation, DeCl only
imposes a modest ∼ 20% overhead with metering, measured
on a subset of SPEC 2017 for both x86-64 and Arm64.

We integrate DeCl into Groundhog [45], a scalable smart
contract engine currently using a WebAssembly interpreter.
Using native code for smart contracts allows them to run CPU-
intensive computations faster, by roughly 2× (compared to
JIT compilation) or 30× (compared to interpretation). Since
some important smart contracts are short-lived, we have op-
timized the system to have a sandbox startup latency of less
than 15µs (load and execute), and we ensure that loading
sandboxes does not interfere with Groundhog’s scalability.

The rest of the paper describes the design of DeCl for both
x86-64 and Arm64. We find that properties of x86-64 such
as undefined flags, variable-length instructions, a small reg-

ister file, flags-based conditional branches, and stack-based
call/ret are most responsible for higher complexity com-
pared to Arm64.

2 Background

2.1 Threat Model
DeCl enforces determinism against adversarially-constructed
programs. An untrusted party provides a program (expressed
as x86-64 or Arm64 machine code), and the DeCl verifier
accepts it only if it can be guaranteed to be deterministic.
The verifier is allowed to reject programs if it cannot con-
firm determinism, but nonetheless, we would like to be able
to accept as wide a variety of programs as possible, while
imposing minimal performance overhead. The determinism
guarantee only applies within a particular architecture, but
covers all valid microarchitectures. For example, a program
validated for DeCl-Arm64 will behave deterministically on
all Armv8.0-compliant processors, including virtual proces-
sors such as QEMU. In certain cases, we require a processor
to have certain architectural extensions, such as the x86-64
BMI2 extension for the SHRX instruction. Existence of exten-
sions like these can be probed using cpuid (or equivalent).
Requiring extensions reduces the number of processors that
can be used to run the program (older processors become ex-
cluded), but allows for newer instructions to be used.2 We rely
on the hardware being correct for the ISA-subset accepted by
the verifier.3

We also support requiring that the programs that run inside
DeCl are metered, and therefore cannot use more than a lim-
ited amount of CPU time. This requirement, when combined
with the determinism requirement, requires special design,
since the preemption must happen in a deterministic way. The
runtime system is initialized with a limit on the number of
instructions that can be executed before preemption occurs.

We assume the following properties about the runtime sys-
tem, which are typical for adversarially-deterministic systems
such as smart contract engines:

1. The runtime provides a deterministic “runtime call API”
that a sandboxed program uses to have external effects.

2. The runtime disables shared-memory multiprocessing.

3. The runtime deterministically initializes the sandbox by
zeroing the initial memory. Section 7.2.1 discusses the
performance impact on startup time.

Enforcing determinism requires that the sandboxed pro-
gram must not be able to access memory outside its sandbox
(memory isolation). DeCl can work with either hardware or
software-based memory isolation, and we describe additional

2Older processors could be supported via dynamic recompilation, but we
do not implement or evaluate this approach.

3Recently discovered hardware issues we are aware of [1, 3, 5] involve
programs that are already disallowed by the verifier by default.

changes needed for the software-based case in Section 5. We
also terminate programs after a memory fault. This is rele-
vant due to torn stores: stores that straddle a mapped and
unmapped page boundary. On Arm64, it is implementation-
defined whether the memory in the mapped region is altered
or not. While there are multiple mechanisms to solve this is-
sue, such as simulating the stores, or performing a load before
every store [20], we simply terminate the program.

Side channels Side-channel attacks exploit non-
determinism in the runtime API or instruction behavior to
recover information about parts of the system that should
not be available to the application. These exploits most
commonly use timers to recover information about data in
the cache. Since DeCl removes all non-determinism in the
runtime API and available instruction set, timers or other
side-channel vectors (e.g., parallelism or atomics [59]) are
impossible to use.

2.2 Secure Machine Code Analysis
The verifier must be able to guarantee that the program can-
not execute any instructions that have not been analyzed. Bi-
nary analysis systems that enforce memory isolation, such as
NaCl [50] and LFI [57], contend with the same issue. Hence,
we can use the same techniques they use, which we summa-
rize below.

On Arm64, thanks to fixed-width instructions, it suffices
to enforce that memory is never executable and writable at
the same time (commonly called WˆX). As a program cannot
write to executable regions and it cannot jump to the middle
of an instruction (which causes a trap), all instructions can be
verified before making memory executable.

On x86-64, in addition to WˆX memory, we must prevent
untrusted code from jumping to the middle of an instruction
and executing a completely different instruction sequence
from the one disassembled. The solution we use is aligned
bundles, first introduced by the PittSFIeld [36] system, and
now supported by both the LLVM and GCC assemblers. In-
structions are organized into 32-byte bundles, as illustrated
in Figure 2. The verifier rejects any program that includes
instructions that span bundle boundaries, so a compiler tar-
geting DeCl adds nop padding to move these into the next
bundle. Additionally, the verifier ensures that all jumps target
bundle boundaries—static branches are directly inspected,
and indirect branches (including returns, which are rewritten
into indirect branches) are required to include a preceding
mask instruction that aligns the target to a bundle boundary
by zeroing the bottom 5 bits of the target.

In both cases, programs must separate code and data, lest
the data correspond to unsafe instructions that would be re-
jected by the verifier. Fortunately, modern x86-64 and Arm64
compiler toolchains already can generate separate code and
read-only data segments by default. The -z separate-code

×

Figure 2: Illustration of aligned bundles. Each bundle consists
of multiple instructions, padded such that no instruction spans
a bundle boundary. Jump targets must be bundle-aligned (in-
dicated by green dots). The verifier rejects jumps that may
target the middle of a bundle or instruction.

linker flag can be used to instruct the linker to create distinct
code and data segments in the final binary.

With these methods for guaranteeing secure machine code
analysis in hand, we can design machine code analyzers that
only accept programs with known instructions whose seman-
tics are fully understood by the analyzer. Programs contain-
ing any unknown instructions are rejected. Traditionally, this
technique has been used to make verifiers that only accept
programs with instructions known to be memory-safe, but we
show that this can also be applied to accept only programs
with instructions known to be deterministic.

3 Deterministic Machine Code

The DeCl verifier must only accept programs that execute
deterministically. Therefore, these programs must contain
only instructions known to be deterministic. Additionally,
some x86-64 instructions execute with unpredictable seman-
tics only for certain inputs. To accept these (useful) instruc-
tions, the verifier must ensure that these problematic inputs
are not present when those instructions execute. Enforcement
on Arm64 is simpler because the ISA has fewer cases of
unpredictable behavior. We describe our implementation for
Arm64 and x86-64 separately.

Floating point We restrict our analysis to the integer sub-
sets of x86-64 and Arm64, including SIMD but not including
floating point. In particular, instructions like rsqrtss (Recip-
rocal of Square Root) are required to provide at most some
amount of error but within those bounds can use any precision,
which can cause non-determinism. We believe a deterministic
subset of floating point operations could be safely included
in DeCl (including things like FP addition, but excluding
rsqrtss), but leave this out of scope in this paper.

3.1 Arm64

In Arm64, the following cases of non-determinism exist at
the instruction level:

• Instructions encoded with malformed SBZ/SBO (should-
be-zero/should-be-one) fields are UNPREDICTABLE.

• Some instructions have explicitly non-deterministic se-
mantics, such as instruction pairs for atomic loads and
stores. For example, the instruction stxr returns differ-
ent values depending on the status of the exclusive moni-
tor, which can depend on factors such as timer interrupts
generated for the host kernel. As another example, mem-
ory instructions that both increment and write back to
the same register are UNPREDICTABLE: ldr x0, [x0],
#16. Early versions of LLVM could erroneously produce
this instruction [17].

• Unallocated instructions.

Our verifier rejects programs that contain such instructions,
as well as instructions that are UNDEFINED,4 with one excep-
tion: we allow the udf #0 instruction as an explicit way to
generate an undefined instruction exception.

The DeCl Arm64 subset only supports instructions from
the Armv8.0 base ISA, with roughly 180 base instructions and
an additional 430 SIMD instructions. These instruction counts
are derived from the decoder we use, so different counts could
be expected if using a decoder that classifies distinct instruc-
tions differently.

Arm64 also allows hardware-enforced stack pointer align-
ment. When enabled by the OS, stores to the stack pointer
when it is not aligned to a 16-byte boundary cause a fault.
While we could simply require that this check always be en-
abled (as is done by Linux), our verifier also requires that mod-
ifications to sp preserve its alignment. Arm64 also supports
multiple base page sizes (4KiB, 16KiB, or 64KiB), and for
determinism DeCl must pick one. A machine with a smaller
page size can efficiently emulate one with a larger page size,
so picking the largest page size is best. Our implementation
uses 16KiB pages because there isn’t any commodity hard-
ware configured with 64KiB pages.

3.2 x86-64

The situation on x86-64 is more complex, as the instruction
encoding space is far larger. We start by limiting the instruc-
tions accepted by the verifier to a known, fully-enumerable,
subset of x86-64. We recorded all instructions that can be
encoded by the Fadec encoder [18] and represent this set with
a binary decision diagram (BDD), which can be stored in
less than 200KiB. Instructions accepted by the verifier must
first be decoded by the BDD, guaranteeing that the verifier
operates only on instructions with known semantics. Once
approved by the BDD, the instructions are further restricted
to the DeCl subset, which includes roughly 100 instructions
from the base x86-64 ISA, along with 125 SIMD instructions
from the SSE2 extension. For branch-based metering, we also
require the SHRX instruction from the BMI2 extension.

4Even though according to the Arm manual, UNDEFINED instructions
deterministically generate an “undefined instruction” exception.

Instruction Undefined if Ex. guarded sequence

SHLD, SHRD COUNT > OPSIZE
andb $0x1f, %cl
shrdl %cl, %ebx, %eax

BSR, BSF SRC = 0

test %eax, %eax
jz .SKIP
bsr %eax, %ebx
.SKIP:

Table 2: x86-64 instructions that may produce undefined re-
sults for certain inputs, and guards that can be applied be-
forehand to rule out this possibility. The guard sequence for
shifts may additionally require saving and restoring %rcx (be-
cause %cl is modified), which can be done using the rewriter-
reserved %r11 register.

Moreover, some instructions may generate undefined (i.e.,
non-deterministic) values. For example, the SHLD instruction
produces an undefined value if the shift operand is larger than
the bit-width of the shifted value. Many instructions also put
flags into undefined states. For example, the BT (bit-test) in-
struction modifies the CF flag, leaves the ZF flag unchanged,
and makes the OF, SF, AF, and PF flags undefined. Observing
the state of an undefined flag can cause non-deterministic be-
havior. While individual CPU implementations are typically
deterministic in this respect, the behavior is not consistent
across CPU microarchitectures. A program that abuses an
undefined flag will behave differently when run on Intel vs.
AMD processors, and in some cases even when run on P-cores
vs. E-cores within the same processor, since P- and E-cores
do not necessarily share the same microarchitecture.

3.2.1 Preventing undefined results

The instructions in Table 2 may produce undefined results [26,
27]. Our program rewriter adds one or more guard instructions
to force the input to be valid, and the verifier checks for the
presence of these guards before marking memory executable.
For example, for a shift of 16-bit data, we apply a mask to the
shift amount to force it to be less than or equal to 16.

As of October 2024, the Intel SDM has been updated to
say that if the content source of a BSR/BSF is zero, the result is
unmodified, rather than undefined. However, the pseudocode
of the operation continues to say the result is undefined, and
other parts of the manual (documentation for TZCNT/LZCNT)
still refer to the result as undefined in the case of a zero input.
We continue to consider the output as undefined for BSR/BSF
instructions with an input of zero.

3.2.2 Preventing use of undefined flags

Blocking all instructions that may read or write undefined
flags would unreasonably restrict the set of verifiable pro-
grams. Instead, our verifier reasons about the data-flow of the

Algorithm 1 Flags Analysis

1: function ANALYZE(B, Report)
2: U ← IN[B] ▷ Set of undefined flags
3: for all instruction I in basic block B do
4: if Report and I reads a flag f and f ∈U then
5: Raise error
6: end if
7: for all flags f defined by I do
8: U [f]← 0
9: end for

10: for all flags f undefined by I do
11: U [f]← 1
12: end for
13: end for
14: OUT[B]←U
15: end function
16: function ANALYZECFG(CFG)
17: for all basic block B in CFG do
18: IN[B]← 1∗

19: end for
20: for all basic block B in CFG do
21: ANALYZE(B, false)
22: end for
23: for all basic block B in CFG do
24: IN[B]← OUT[Bp1]| . . . |OUT[Bpn]
25: end for
26: for all basic block B in CFG do
27: ANALYZE(B, true)
28: end for
29: end function

flags, so that it can verify whether any instruction that reads a
flag does not observe an undefined value.

Although indirect branch targets are not statically known,
the verifier enforces the target bundle-alignment requirement
via a masking and instruction directly before an indirect jump.
This instruction leaves every observable flag in a defined
state5, so we need only reason about data-flow of flags on the
part of the control-flow graph of the program that is defined
by static branches.

We define a function called ANALYZE (Algorithm 1) that
runs on each basic block and uses a set IN, representing the set
of flags that are undefined at entry to the basic block, to com-
pute OUT, the set of flags that are undefined after executing the
basic block. ANALYZE steps through each instruction in the
basic block, updating its set of undefined flags initialized from
IN, and signals an error on instructions that appear to read
an undefined flag. Once complete, it updates the OUT set for
the corresponding basic block. In each iteration, ANALYZE is
run on every basic block. In a full analysis, iterations are run
until the program passes verification, or until a fixpoint. In

5AF is undefined by and, but AF cannot be observed by any instruction
in DeCl’s x86-64 subset.

practice, we have have found that all conforming programs we
have compiled with LLVM or GCC pass verification within 2
iterations. Thus it is reasonable to stop analysis and reject the
program after 2 iterations if the verifier can not yet prove that
no undefined flags are read. ANALYZE uses an internal table
adapted from the Intel manual [28] that specifies for each
x86-64 instruction whether it reads, modifies, or undefines a
flag.

This analysis may reject programs that do not read un-
defined flags, but it will never accept a program that reads
undefined flags. A program can always be written such that it
passes verification in only one iteration by always setting flags
in the same basic block where they are read. The cross-basic
block analysis is only necessary to support code generation
behavior in existing compilers (as we want to avoid modifying
LLVM/GCC).

3.2.3 Spurious prefixes

CPU implementations consistently accept instructions with
unnecessary prefixes, which are ignored (but have caused se-
curity bugs [5]). Our verifier only accepts programs that do
not use spurious prefixes—this is a side effect of the fact that
the verifier only accepts instructions that can be produced
from an x86-64 encoder. We make an exception for nop in-
structions, which are often encoded with additional prefixes
for padding and have canonical representations.

3.3 CPU Fuzzing

In order to gain confidence in the system beyond just the
information in architectural reference manuals and formal
ISA semantics, we have a fuzzer that distributes programs
to machines of various microarchitectures. The fuzzer is not
a necessary component of the DeCl system, but is used as a
testing mechanism to find errors in the hand-written verifier.
Ultimately, the verifier is the trusted component that must
determine if a program is guaranteed to be deterministic or
not.

The fuzzer randomly samples instructions from the ISA
(for Arm64 this is the set of 4-byte integers; for x86-64 this
is the set represented by the BDD used to restrict instructions
to a known encodable subset). These instructions are used to
create small basic blocks until they pass verification and then
concatenated into verified programs consisting of megabytes-
to-gigabytes of code. These code blocks are then executed in
an execution environment that records the final state of the
registers and memory. The verifier can be configured to allow
memory accesses that are masked to target a certain memory
region (the fuzzer will map pages in the region as they are
accessed). Our fuzzer currently does not generate any branch
instructions, but this is not a fundamental limitation—it is
simpler to disallow branches during fuzzing, and since there
are very few branch instructions (on the order of 10), we can

manually analyze their behavior.
We have run our fuzzer on several (5+) microarchitectures

for both Arm64 and x86-64. In our testing, the fuzzer quickly
finds cases of non-determinism caused by undefined flags or
undefined results if we allow such cases to pass verification.

4 Deterministic Metering

By default, there are no constraints on the amount of CPU time
that a DeCl program may consume. To prevent a program
from taking over the CPU, we use a notion of “metering,”
(commonly called “gas”). The program continues running
until there is no more gas in the meter, at which point it is
preempted. A typical operating system would implement this
by using timer interrupts. However, that design is not deter-
ministic, since the interrupt may fire non-deterministically
before or after a runtime call with side-effects. In the case
of atomic transactions, aborting after a timeout could cause
replicas to disagree about whether a transaction succeeded or
ran out of gas.

A deterministic alternative is to keep an instruction count.
By terminating after N instructions have executed, programs
can be deterministically preempted. Unfortunately, the per-
formance monitoring unit (PMU) in modern processors does
not provide deterministic instructions counts. As a result, we
must manually track the number of executed instructions (the
amount of “gas” used) via additional instructions that must
be included in a sandboxed program. At a high level, these
extra instructions debit a gas counter register (x23 or %r12)
according to the number of instructions executed in a basic
block and use this counter to cause deterministic termina-
tion, either via a trap/branch into the DeCl runtime or via
preemption from a timer. We will refer to these two mecha-
nisms as branch-based and timer-based metering respectively.
While timer-based metering makes use of a non-deterministic
timer, its use in combination with the gas counter allows for
deterministic preemption (details in Section 4.3).

Furthermore, since we are enforcing metering directly on
machine code programs, the metering schemes must be effi-
ciently checkable by our static verifier. The verifier must be
certain that there is no way to execute a branch instruction
without also executing the immediately preceding metering
instructions. This could happen if a previous branch or jump
skipped over the metering instructions and directly targeted a
branch. We use aligned bundles to prevent this scenario.6

4.1 Aligned Bundles

With metering enabled, we require aligned bundles (discussed
earlier in Section 2.2) on both Arm64 and x86-64. To im-
plement bundling on Arm64, we reserve the x24 register for

6It is also possible to use hardware-enforced control-flow (BTI on Arm64
and IBT on x86-64), but these mechanisms are not yet widely deployed.

holding bundle-aligned addresses. The verifier will only ac-
cept indirect branches that target x24, and will only accept
instructions that modify x24 by zeroing the bottom log(N)
bits from the source register, where N is the bundle size (e.g.,
bic x24, xN, 0xf). All branches must target the beginning
of a bundle, making it impossible to execute instructions at
the end of a bundle without executing those at the start.

On Arm64, we use 16-byte (4-instruction) bundles for
branch-based metering, and 8-byte (2-instruction) bundles
for timer-based metering. On x86-64, we use the 32-byte bun-
dles that are already required for machine code verification.

4.2 Branch-based Metering
Branch-based metering keeps an instruction meter in a re-
served register (x23 or %r12). The verifier enforces that every
basic block ends with instructions that decrease the meter by
the number of instructions in the block, and checks that the
meter has not reached zero.

In general, detecting basic blocks in machine code is not
possible because indirect branches may jump anywhere in the
program. However, we do not need precise basic block analy-
sis in order to provide metering, so long as any imprecision is
conservative and deterministic. Consider a program without
indirect branches; in this case all basic blocks are known stat-
ically, and we can charge the correct amount of gas at the end
of each basic block. Now, if the program includes indirect
branches, those branches may arrive somewhere within an
existing basic block. The program will then be charged as if
the entire basic block executed, even if it was only partially
executed due to an indirect branch arriving in the middle. This
may deterministically overcharge the program, but that is safe
and only means the program terminates sooner. A program
can remove this imprecision by splitting its basic block at
indirect branch targets. Splitting a basic block is always legal.

A metering epilogue, shown in Fig. 3, must be inserted
at the end of every basic block. This epilogue decreases the
instruction meter and then checks if the top bit of the count
is 1. If so, the meter has underflowed and a trap instruction is
executed. Due to the encoding of the subtract instruction, it
is impossible to both underflow and have a zero at bit 63 of
x23/%r12 (the immediate cannot be large enough).

Preserving flags On Arm64 and x86-64, many branch in-
structions jump based on the status of the flags. A gas check
inserted before a branch cannot, therefore, modify the flags.
Arm64 provides the tbz instruction, which performs a condi-
tional branch based on a bit test rather than a flag. On x86-64,
the only conditional branch that does not read flags is jrcxz,
which performs a jump if %rcx is zero. We use jrcxz to build
a metering sequence that preserves flags (Fig. 3a). We must
also use an lea instruction in order to subtract from the gas
register without modifying any flags, and a flags-preserving
shift (shrx, provided by the BMI2 extension). One possible

lea -n(%r12),%r12
push %rcx
mov $0x3f ,%ecx
shrx %rcx ,%r12 ,%rcx
jrcxz OK
int3
OK: pop %rcx
<branch >

(a) x64 flags preserved

sub $n, %r12
jns OK
int3
OK: <branch >

(b) x64 flags clobbered

sub x23 , x23, #n
tbz x23 , #63, OK
brk #0
OK: <branch >

(c) Arm64

Figure 3: Instruction sequences for branch-based metering,
where n denotes the number of instructions in the immediately
preceding basic block. The x86-64 sequence is complicated
for cases that must avoid modifying the flags register.

sub x23, x23, #n
<branch >

(a) Arm64

lea -n(%r12), %r12
<branch >

(b) x64

Figure 4: Instruction sequences for timer-based metering on
Arm64 and x86-64.

optimization would be to detect the preceding instruction that
sets the flags and, if possible, pull that instruction into the
metering sequence directly before the branch—avoiding the
need to preserve flags. We do not perform this optimization.

4.2.1 Removing gas checks

The expensive part of the basic block epilogue is the under-
flow check. We can optimize away this check if the basic
block does not end with a backwards branch. Consider a pro-
gram of size N where a basic block that ends with a forwards
branch exhausts all remaining gas, and no check is performed.
Within at most N instructions, the program must either exe-
cute a backwards branch, causing a gas check, or terminate
because no instructions remain. Thus, if the basic block ex-
hausts all gas, the program will terminate after at most N
further instructions. This means we can cap the value of N at
a small amount, such as 10M instructions, and elide all gas
checks for forward branches.

4.3 Timer-based Metering

Timer-based metering uses a timer interrupt in combination
with the gas counter to enable deterministic preemption. This
scheme relies on the insight that a program running in a
DeCl sandbox can only have externally visible effects when it
makes a runtime call. As long as the program does not make

any externally visible changes after it runs out of gas, it does
not need to be immediately preempted. Thus, timer-based
metering works as follows:

• A timer interrupt is configured to fire frequently.

• When the program makes a runtime call, it is terminated
if its gas is negative.

• When a timer interrupt occurs, the program is terminated
if its gas is negative.

Since the runtime always checks the gas before applying
the effects of a runtime call, it is impossible for a program
to have any effect after it runs out of gas, even though it may
continue running for a non-deterministic amount of time. To
an external observer, the program behaves deterministically.
This scheme assumes that a runtime call is the only way to
cause an externally visible effect—this would not work if the
memory state of the program were also externally visible.

Since gas checks are only performed after interrupts or
runtime calls, basic block epilogues only need to update the
gas counter, and can always omit the expensive gas check.
This makes it possible to use a bundle size of 8 on Arm64.
Fig. 4 shows metering sequences for Arm64 and x86-64.

Timer-based metering relies on the ability to configure a
timer interrupt, for example via signals on Linux. This scheme
also allows a program to use up to t seconds of CPU time
after running out of gas, where t is the size of a time slice.
While timer-based metering allows all gas checks to be elided,
it can cause overhead if the time slice is too short. As a result,
branch-based metering may be better for systems that give
programs only a tiny amount of gas.

5 Integration with Lightweight Sandboxing

DeCl can be used with hardware-based or software-based
memory isolation. For a smart contract engine, fast startup
time and context switches are crucial. For this reason, we have
integrated DeCl with LFI, a software-based sandboxing sys-
tem where all sandboxes run in the same address space. LFI
supports both x86-64 and Arm64 using techniques described
in prior work [40,50,57]. Section 5.1 provides an overview of
these techniques, and Section 5.2 discusses the modifications
to LFI required to make it deterministic.

5.1 Background: LFI
Lightweight Fault Isolation (LFI) is a sandboxing system that
uses software-based fault isolation (SFI). Programs running
in LFI are restricted to accessing a 4GiB region of contiguous
virtual memory, and may not execute system call instructions
or other instructions deemed “unsafe.” These restrictions are
enforced via a static verifier that analyzes the machine code
of untrusted programs. In order to accurately disassemble
programs, LFI uses the techniques described in Section 2.2.

datacode

4GiB

32-bit pointer

Figure 5: Layout of an LFI sandbox. Red regions indicate
unmapped pages.

The basic LFI scheme allocates each sandbox at an address
aligned to 4GiB, illustrated in Figure 5. Unmapped guard
pages are required between adjacent sandboxes, with sizes
determined by architectural details and the chosen sandboxing
scheme (typically chosen to be 80KiB for Arm64 and 40GiB
for x86-64). Several Arm64/x86-64 registers are reserved for
special use and must contain:

• x21 / %r14, %gs: the base address of the sandbox.

• sp / %rsp: an address within the sandbox.

• x18 (Arm64-only): an address within the sandbox.

• x30 (Arm64-only): an address within the sandbox.

Note that Arm64 has 32 64-bit integer registers (x0-x30 and
sp), which can also be accessed via names that only access
the bottom 32 bits (w0-w30 and wsp). When wN is written,
the top 32 bits of xN are set to zero. Similarly, x86-64 has
16 64-bit registers (%rax-%r15), which can be accessed via
32-bit subsets (%eax-%r15d).

All loads and stores are rewritten into safe versions that
perform the memory access as a 32-bit offset from the base
of the sandbox. This way, the memory access cannot reach
memory outside of a 4GiB region, starting from the base ad-
dress. The following instructions are example of safe memory
accesses on Arm64 and x86-64:

ldr x0, [x21, w1, uxtw] // Arm64
mov %gs:(%eax), %rdi // x86-64

The first instruction above takes the 32-bit value w1 (namely
the low 32 bits of x1), treats it as an unsigned 32-bit value
before extending it to 64 bits (specified by the uxtw modi-
fier), adds the extended value to register x21, loads the value
at that computed address, and stores the result in x0. Since
x21 contains the 4GiB-aligned base address of the sandbox
region, the address that is loaded is guaranteed to be within
the sandbox, regardless of the value of x1. A similar operation
takes place for the x86-64 instruction through the use of %gs,
an optimization introduced by Segue [40].

We omit many further details of the sandboxing scheme for
brevity. Please see prior work on these kinds of sandboxing
systems for details [36, 40, 50, 54, 57, 58].

5.2 Position-Oblivious Code
The particular 4GiB slot allocated to an LFI program is deter-
mined by the runtime and is non-deterministic, as we want to

support running multiple sandboxes at the same time. Since
LFI programs are able to read their base address, their stack
pointer, or any absolute address used to perform memory ac-
cesses, an LFI program can determine where in the address
space it is executing, and behave differently depending on
this value. While this is not a problem for enforcing memory
isolation, it becomes a problem for determinism.

To solve this problem, we introduce position-oblivious code
(POC): programs that cannot determine their load address. A
position-oblivious program may be loaded at any address, and
its result is guaranteed to have no dependence on that load
address. A program can be verified to be position-oblivious
by a static verifier before it is loaded.

Position-oblivious code builds on the LFI technique by
statically verifying that absolute addresses are never directly
observed. The verifier ensures that reserved registers, which
may contain absolute addresses, are only ever accessed via
their bottom 32 bits (i.e., w30 instead of x30). Thus, the pro-
gram may only directly observe offsets from the base address.
If the absolute sandbox base address can never be observed,
the program is oblivious to where it was loaded.

For example, the following sequence is used to store the
return address (x30) into the address offset stored in x0. This
is usually performed as str x30, [x0], but with LFI and
position-oblivious code it becomes:

mov w22, w30
str x22, [x21, w0, uxtw]

This first reads the bottom 32 bits of w30 into w22 and then
stores that value into memory, instead of the 64-bit x30.

Similarly, moves from the stack pointer, such as mov x0,
sp, are rewritten to read only the 32-bit subset of sp:

mov w0, wsp

Absolute addresses that contain the correct top 32 bits
identifying the sandbox location are only stored in reserved
registers that are verified to never be directly observed. Before
accessing a memory location, the top 32 bits are always set to
the correct value and only the bottom 32 bits of a reserved reg-
ister may be read. On x86-64, the verifier checks that the %r11
register, which is used for computing safe bundle-aligned in-
direct branch targets, may only be read as %r11d (the bottom
32 bits of %r11).

The verifier also ensures that any instructions that produce
an address dependent on the program counter (the adr and
adrp instructions, or %rip-relative addressing) imme-
diately zero the top 32 bits of the address:

adr x0, foo
mov w0, w0

These extra constraints mainly affect only three situations:
storing the return address on the stack, loading the address of
a global, and loading the value of the stack pointer to perform
arbitrary computation. These cases are less frequent than
regular loads/stores, so the additional overhead is minor.

When implementing a runtime with POC support, care
must be taken so that the runtime does not reveal a sandbox’s
true addresses. For example, pointers returned from runtime
calls must have their top 32 bits zeroed. Since POC programs
behave the same no matter where they are loaded, they are
compatible with a POSIX fork API, even though they all
exist within the same hardware address space.

x86-64 calls On x86-64, the call instruction pushes the
return address (an absolute address) onto the stack. As a re-
sult, the verifier must reject call instructions. The rewriter
replaces call instructions with a leal+push+jmp sequence
that never exposes an absolute address to memory/registers.
Unlike a real call, this call sequence sets the return address
to an instruction further away than the immediate next instruc-
tion, and as a result does not need to be placed at the end of a
bundle. In some cases this can actually improve performance,
as the nops at the end of a bundle after a position-oblivious
call sequence are skipped, whereas they would have been exe-
cuted (and placed before the call) if using a call instruction.
Returns already must be instrumented to enforce bundling,
and will add the base address to the return address before
indirect branching. Additionally, instructions like stos and
movs instructions that access memory through %rdi/%rsi
without using addressing modes must zero the top 32 bits of
%rdi/%rsi after executing.

x86-64 flags Finally, information about the sandbox base
must not leak via the flags. The or %r14, %r11 instruction
that guards branch targets after the bundle mask sets the ZF,
SF, and PF flags. PF is always unaffected by the sandbox base
since it only tracks the parity of the bottom byte of the result.
SF is unaffected as long as sandboxes are only allocated from
one half of the address space (e.g., user addresses), and ZF
is unaffected as long as the zero sandbox is never allocated.
It is possible to avoid these issues if one wants to allocate
sandboxes in both the top (kernel) and bottom (user) halves
of the address space by using a slightly larger lea (%r14,
%r11), %r11 instruction instead, which does not affect flags.

5.3 Other Modifications to LFI

Dedicated runtime call register LFI reserves the first page
of the sandbox to store metadata about the process, includ-
ing the entrypoint for runtime calls. This allows the system
to reuse x21 as the address of this metadata page instead of
reserving another register for this purpose. However, the con-
tents of this page are not deterministic, so the sandbox cannot
be allowed to read it. Thus, DeCl cannot use this page for
metadata (DeCl simply leaves it unmapped) or take advantage
of the associated optimization, and instead stores the runtime
call table outside of the sandbox, while reserving a separate
register (x25/%r13) to contain the address of the runtime call

System Reserved registers Bundle size
DeCl-HW-x64 %r11* 32B
DeCl-LFI-x64 %gs, %r14, %r11, +%r13 32B
DeCl-timer-x64 +%r12 32B
DeCl-branch-x64 +%r12 32B
DeCl-HW-A64 none none
DeCl-LFI-A64 x21, x18, x30, x22*, +x25 none
DeCl-timer-A64 +x24 +x23 8B
DeCl-branch-A64 +x24 +x23 16B

Table 3: Register and bundle requirements for all configura-
tions of DeCl, targeting x86-64 (x64) and Arm64 (A64). A
+ indicates an additional register not reserved by LFI’s base
configuration. A * indicates a register reserved as a temporary
for the rewriter, but its use is ignored by the verifier.

table page. The verifier enforces that this register is only ever
accessed for performing runtime calls.

Redundant guard hoisting Guard hoisting is an optimiza-
tion used by default in the original implementation of LFI,
which reserves two registers. To avoid reserving these two
additional registers, we use a more limited form of this opti-
mization that simply eliminates redundant guards of the same
address without any intervening modifications to x18.

Gas register When metering is enabled, DeCl also reserves
a register to store gas (x23/%r12). On Arm64, the x24 register
is also reserved to store bundle-aligned addresses.

6 Implementation

DeCl supports multiple configurations, useful in different
scenarios, and summarized in Table 3:

1. DeCl-HW: enforces that programs are deterministic, but
relies on hardware protection for memory isolation, and
does not provide any metering. This is the configuration
that imposes the least overhead, but requires process
isolation or a custom kernel to provide memory isolation.

2. DeCl-LFI: provides determinism on top of LFI’s mem-
ory isolation. This configuration is easy to integrate with
Linux applications, since sandbox isolation is handled
within a single Linux process. Additionally, sandboxes
are extremely lightweight, allowing for faster startup and
context switch times compared to DeCl-HW.

3. DeCl-metered: Additional branch or timer-based meter-
ing can be enabled in combination with either DeCl-LFI
or DeCl-HW. This is necessary for smart contract en-
gines that require preemption. For smart contracts, we
choose metered DeCl-LFI for fast startup times.

The implementation of DeCl consists of three components:
a compiler, a static verifier, and a runtime implementation.
This section describes the first two components. The run-
time implementation depends on the application using DeCl.
Section 7.2 describes the integration with Groundhog.

6.1 Compiler
Programs are compiled for DeCl using a standard
LLVM/GCC toolchain, followed by an assembly rewriter.
The rewriter consumes assembly text produced by the com-
piler and inserts additional instructions. The metering exten-
sion inserts sequences before branch instructions. To create
aligned bundles, we use the .bundle directives supported by
Clang and GCC, including .bundle_align_mode to set the
bundle size, and .bundle_lock/.bundle_unlock to force
sequences of instructions into the same bundle.

6.2 Static Verifier
The DeCl verifier determines if an input is a valid DeCl pro-
gram. It is a standalone program with limited complexity that
runs in linear time. First, it decodes all instructions in the in-
put program and rejects programs that contain any unknown
instructions. The decoder is constructed from a fully enumer-
able set of instructions that only includes well-formed and
deterministic instructions. For example, x86-64 instructions
with invalid prefixes are never added to the enumerable set,
and are thus considered unknown. Instructions from unsup-
ported extensions (e.g., x87 FPU) are also not included.

Next, the verifier ensures that each instruction is safe, de-
pending on the configuration in use. For example, for DeCl-
HW-x64, it imposes the following restrictions: (1) No instruc-
tion spans a bundle boundary, (2) all direct branches target a
bundle-aligned address, (3) indirect calls or jumps are only
used as part of a macro-instruction consisting of a bundle-
masking AND immediately followed by the indirect branch.

Finally, on x86-64, the verifier applies the undefined flags
analysis described in Section 3.2.2.

When using an LFI-based configuration, the verifier addi-
tionally checks for memory isolation properties: loads, stores,
and indirect branches are only performed with safe address-
ing modes/macro-instructions, and reserved registers are only
modified in specific ways (to preserve sandbox invariants).

6.2.1 Enforcing Metering

In order to validate metering, the verifier must first determine
the program’s basic blocks. It does so using the linear-time
leader construction algorithm, marking an instruction as a
leader if it is the first instruction, any instruction following a
branch, or any instruction that is the target of a direct branch.

Next, the verifier iterates through the leaders and enforces
that each basic block ends with the appropriate metering se-

quence. If the basic block ends with a branch, the metering
sequence and the branch must be in the same bundle. For
example, for DeCl-branch-A64, the metering sequence is:

sub x23, x23, #n (d1nnn2f7)
tbz x23, #63, end (b6f80057)
brk #0 (d4200000)

end:

The value n is calculated from the location of the current
instruction and the previous leader, and is verified against the
immediate in the (program-provided) subtraction instruction.

The verifier also tracks the locations of these instructions,
and in a final pass ensures that no modifications to x23 or tbz
x23 instructions occur outside these areas, and that branches
do not target instructions within gas update sequences by
making sure that branches correctly target aligned bundles.

Some “basic blocks” may be unreachable—for example,
the padding between the end of one function and the begin-
ning of another. The assembly rewriter does not know about
padding and does not insert gas update sequences there. How-
ever, the verifier still expects such padding to be metered.
To solve this problem, we allow basic blocks to be merged:
if the verifier sees a basic block that ends without a gas up-
date sequence and that has no terminating branch (it just falls
through), the verifier accepts the code so long as the next basic
block’s gas update sequence charges for both blocks. Hence,
the first basic block of a function charges for padding between
it and the previous function, incurring a small amount of gas
overcharging. However, this also means compilers targeting
DeCl can opt to merge basic blocks, trading off the possibility
of some overcharging for reduced metering overhead.

7 Evaluation

Our evaluation of DeCl seeks to answer the following ques-
tions: first, what is the performance overhead of enforcing
determinism, metering, and position-oblivious code, and how
does this compare with existing state-of-the-art approaches?
To answer this, we evaluate DeCl on the SPEC CPU2017
benchmark suite with a variety of configurations.

Next, in the context of smart contracts (the primary indus-
try use-case for adversarial determinism), what tradeoffs does
DeCl provide, what metrics are important, and how does DeCl
perform on those metrics compared to existing approaches?
We evaluate DeCl with Groundhog, a scalable smart contract
engine, and evaluate on a payment transaction benchmark
(where we find startup overheads to be very important) as
well as on contracts that perform zero-knowledge proof veri-
fication (where CPU overheads dominate).

7.1 General Performance
To evaluate general CPU overheads imposed by DeCl, we
use the SPEC CPU2017 benchmark suite. Benchmarks are

0
10
20
30
40
50
60
70
80
90

502.gcc (x64)

505.mcf (x64)

520.omnetpp (x64)

523.xalancbmk (x64)

525.x264 (x64)

531.deepsjeng (x64)

541.leela (x64)

557.xz (x64)

geomean (x64)

502.gcc (A64)

505.mcf (A64)

520.omnetpp (A64)

523.xalancbmk (A64)

525.x264 (A64)

531.deepsjeng (A64)

541.leela (A64)

557.xz (A64)

geomean (A64)

Pe
rc

en
ti

nc
re

as
e

ov
er

na
tiv

e
ru

nt
im

e

DeCl-LFI-branch
DeCl-LFI-timer
DeCl-LFI-POC

LFI
DeCl-HW

Overhead on SPECint 2017 - AMD Ryzen 9 7950X (x64)/Apple M2 (A64)

Figure 6: Overheads of all DeCl configurations on integer SPEC benchmarks.

limited to ones that compile with LFI: they must be written in
C or C++ and compile with a Musl/LLVM toolchain. We also
use the SPECrate benchmarks rather than SPECspeed due to
the 4GiB memory restriction imposed by LFI (SPECspeed
requires 16GiB RAM per benchmark). We also exclude the
SPEC floating point benchmarks, since we consider floating
point out of scope.7 This restricts the suite to 8 benchmarks.
All benchmarks are compiled with LLVM 19.1.4, with link-
time optimization enabled.

While the programs in SPEC are compiled to be deter-
ministic, in order to run the benchmarks, the runtime must
provide non-deterministic functions, such as system calls that
return the time. Our runtime for SPEC provides these non-
deterministic functions for evaluation purposes. We only run
SPEC programs with DeCl to quantify the runtime overheads
caused by rewriting. A system that actually uses DeCl for
full determinism would implement a custom runtime with
a deterministic API and programs would be compiled in a
freestanding environment. We evaluate such a system in §7.2.

We evaluate on a Mac Mini M2 running Debian Asahi
Linux (not virtualized) for Arm64, and on an AMD Ryzen 9
7950X running Ubuntu for x86-64. Both machines are con-
figured so that benchmarks run at the fixed base clock rate
and are shielded from activity outside the benchmarking core,
giving highly consistent results.

Fig. 6 shows the overheads of all configurations of DeCl:
DeCl-HW, DeCl-LFI-POC, and DeCl-LFI-metered. We also
provide LFI overhead as a point of reference.

Table 4 provides a summary of the geomean overheads. The
DeCl-LFI-POC performs similarly to unmodified LFI (∼ 9%
versus ∼ 8% overhead), since the main change is the addition
of position-oblivious code, which in general only affects code
that saves return addresses or loads globals. Timer-based me-

7We believe a large subset of floating point operations are deterministic
and could be supported. Evaluation on the full SPEC suite with floating
point yielded lower geomean overheads since FP benchmarks utilize less
control-flow and have lower pressure on integer registers.

0
50

100
150
200
250
300
350
400

505.mcf (x64)

525.x264 (x64)

531.deepsjeng (x64)

557.xz (x64)

geomean (x64)

505.mcf (A64)

525.x264 (A64)

531.deepsjeng (A64)

557.xz (A64)

geomean (A64)

Pe
rc

en
ti

nc
re

as
e

ov
er

na
tiv

e
ru

nt
im

e

Wasmtime-fuel
DeCl-branch

DeCl-timer

DeCl vs. Wasm SPECint 2017 - 7950X (x64)/M2 (A64)

Figure 7: Comparison between metered DeCl and Wasmtime-
fuel on integer SPEC benchmarks.

tering is the most efficient form of metering, with 19% over-
head, since it is able to omit all gas checks, but branch-based
metering is not far behind at 20-40% overhead. Branch-based
metering is more expensive on x86-64, since expensive flags-
preserving metering sequences are often needed. We believe
there is potential for more optimization here with a more ad-
vanced rewriter/compiler. DeCl-HW only incurs overhead on
x86-64 (∼ 3%), entirely due to the use of aligned bundles and
the need to rewrite return instructions into indirect branches.
On Arm64, DeCl-HW incurs no overhead since it does not
use any rewrites (Arm programs do not require bundles in
order to be analyzed by a verifier).

Next we compare DeCl with Wasmtime version 24.0.0 [9],
an optimizing WebAssembly JIT compiler designed for run-
ning untrusted code, with support for deterministic metering,
called fuel. We also enable WebAssembly’s 128-bit SIMD
extension for Wasmtime. The results are shown in Figure 7.
DeCl significantly outperforms Wasmtime in both metered
and unmetered configurations, incurring over 2× less over-
head than Wasmtime for equivalent configurations. Table 4
summarizes the geomean experimental results.

System
Fig. 6
x64

Fig. 6
A64

Fig. 7
x64

Fig. 7
A64

Wasmtime-fuel - - 76.5% 109%
Wasmtime - - 56.3% 82.2%
DeCl-LFI-branch 39.3% 24.1% 35.0% 19.7%
DeCl-LFI-timer 19.2% 19.1% 16.5% 15.3%
DeCl-LFI-POC 9.30% 9.40% 7.64% 8.01%
LFI 9.54% 8.52% 8.11% 7.59%
DeCl-HW 4.40% -0.14% 5.47% -0.16%

Table 4: Summary of geomean overheads from Figure 6 (full
set of supported benchmarks) and Figure 7 (only benchmarks
supported by WebAssembly). Configurations with metering
are shown in bold. Some configurations are only shown in this
table and not in the referenced figures due to space constraints.

7.2 Application to Smart Contracts
We integrate DeCl within the smart contract engine Ground-
hog [45], replacing the WebAssembly interpreter (wasm3
[32]) it previously used. This integration required only min-
imal changes to Groundhog, as both DeCl and the Web-
Assembly interpreter have approximately the same input-
output behavior. Smart contracts are compiled with picol-
ibc [43] and interact with the blockchain’s environment (for
example, accessing persistent storage, or requesting metadata
such as the current block number) via a set of specific func-
tions; DeCl replaces imported WebAssembly functions with
runtime calls.

7.2.1 Optimizing Startup and Teardown

A key challenge with the integration is that Groundhog is
designed to scale over many CPU cores via concurrent execu-
tion of smart contracts. Maintaining this concurrent execution
is possible with DeCl because it supports many separate sand-
boxes in the same process. However, maintaining the scala-
bility requires care when setting up sandboxes, so as to avoid
contention on kernel resources. Additionally, smart contracts
can be very short programs (running for less than 100µs), so
it is imperative that sandbox startup be fast.

In the existing LFI runtime, sandboxes are loaded and
mapped into the address space using mmap/mprotect This
approach is not suitable for Groundhog, since it has high
startup overheads (multiple system calls), and is not scalable
because the use of mprotect causes TLB shootdowns.

We solve this problem by preallocating sandboxes with
code and data regions. Programs are given 128KiB of read-
execute code, and 128KiB of read-write data. These regions
are marked with the appropriate protections only the first
time a sandbox is used, and subsequently can be reused for
future sandboxes without the need for any system calls (only
a memset to zero the memory).

We use page aliasing (via in-memory files) to map the code

region twice: once within the sandbox as read-execute, and
separately within the runtime as read-write. This allows the
runtime to write to a sandbox’s code region without needing
to change any memory protections (necessary for loading
sandboxes). On Arm64 (but not x86-64), the runtime must
then flush the instruction cache on the executable region. With
these optimizations, the time to load, execute, and exit from
an empty program is 15µs on the M2 processor, and 2µs on
the AMD 7950X. Zeroing pages is faster on the M2, but the
cache flush dominates the overall time on the M2.

Splitting a contract’s code and data into two separate
128KiB regions requires a slight modification to the default
linkerscript used by GNU LD. We have chosen sizes for these
regions that are as small as possible, while still being usable,
because these regions must be cleared after the sandbox ter-
minates. The throughput of the memset operation to perform
this clear can become a bottleneck if the regions become too
large (such as 1MiB). For workloads with a wide variety of
contract sizes, the system could pre-allocate sandboxes with
varied code/data region sizes.

Code caching As a further optimization, it is possible to
cache a sandbox’s code and reuse it if the same contract is
launched again (skipping the memset operation for the code
region). This is effective for commonly used contracts like
popular ERC20-like tokens, but at the moment our system
does not implement this optimization.

7.2.2 Native Cryptography Primitives

One major benefit of DeCl over WebAssembly sandboxes
for practical smart contracts is that DeCl enables users to
efficiently implement their own cryptography. Even basic op-
erations, like verifying a signature, are sufficiently expensive
that today’s blockchains must provide hard-coded runtime
calls for common operations. This allows the cryptography to
run at the speed of native code, bypassing sandbox overhead,
but limits the operations available to smart contracts.

Ethereum [55] for example, implemented the BN254 curve
[12, 41] within its smart contract environment [15, 46]. Im-
provements to the cryptanalysis [31] have given this curve
less than 128-bit security, and users may wish to use a stronger
cryptographic primitive, such as BLS12-381 [11, 13, 49]. Yet
applications building on Ethereum have no option to change
their cryptographic tools, precisely because deploying a new
special-cased operation in an active blockchain requires a diffi-
cult, coordinated upgrade. By contrast, DeCl allows contracts
to implement their own cryptographic functions internally,
and run fast enough that little performance is lost.

Fig. 8 plots the throughput of Groundhog using various
sandbox environments: DeCl (branch and timer), Wasm3, and
Wasmtime using fuel and the pooling allocator. Each transac-
tion sends a payment between two accounts (of 1,000,000)
chosen uniformly at random. Throughput is measured on

0e0

2e5

4e5

6e5

8e5

1e6

1 32 64 96 128 160 192

Tr
an

sa
ct

io
ns

pe
rS

ec
on

d

Number of Cores

Wasm3
Wasmtime

DeCl-branch
DeCl-timer

Groundhog Performance (x86-64)

1 32 64 96 128 160 192
Number of Cores

Groundhog Performance (Arm64)

Figure 8: Groundhog throughput on varying numbers of
threads, showing that DeCl does not impede scalability. The
solid line shows performance when the smart contract pro-
vides the implementation of Ed25519, and the dashed line
shows performance when Ed25519 is provided by the runtime
as unsandboxed native code.

batches of size 100,000. These experiments are run on one
c7a.metal (x64) or c8g.metal (Arm64) instance in an Amazon
Web Services datacenter. Each system has a 192-core proces-
sor (Graviton 4 or AMD EPYC) without hyperthreading.

Each of these transactions verifies one Ed25519 signature
and microbenchmarks show that approximately 80 to 90% of
each transaction’s runtime is spent on that computation. As a
result, startup time is critical for this benchmark, since each
contract is very short-lived. Wasm3 scales well with access to
a native Ed25519 in the runtime thanks to low startup time,
but significantly degrades once it must perform cryptography
in the sandbox. Wasmtime performs better at low parallelism
in both cases but hits a scaling limit due to startup overhead.
DeCl can combine low startup time with low CPU overhead,
allowing competitive performance even when all of the cryp-
tographic operations run within the sandbox. A smart contract
developer can implement alternative cryptographic primitives
internally and still attain good performance.

We also evaluate DeCl on zero-knowledge proof verifica-
tion workloads, which are often some of the most CPU-intense
programs run on-chain in smart contracts. We benchmark veri-
fication time for Groth16 and Plonk proofs generated using the
SP1 zkVM [8] and verified using SP1’s no_std Rust verifier.
Table 5 shows overheads associated with DeCl, Wasmtime
(JIT compiler with SIMD enabled), and Wasm3 (interpreter).
With DeCl, runtimes for contracts that perform on-chain zero-
knowledge proof verification would be reduced by at least a
factor of 2, and up to a factor of 30 for blockchains that use
an interpreter for contract execution.

8 Limitations

Portability By enforcing determinism at the machine code
level, we lose some degree of portability. While the programs
can be run on architectures other than their native architecture

System Groth16 Plonk
Native (x64) .313s .588s
DeCl-timer .344s (1.10×) .650s (1.11×)
DeCl-branch .407s (1.30×) .763s (1.30×)
Wasmtime-fuel .745s (2.38×) 1.38s (2.34×)
Wasm3 10.5s (33.7×) 20.4s (34.7×)
Native (A64) .189s .338s
DeCl-timer .202s (1.07×) .365s (1.08×)
DeCl-branch .210s (1.11×) .379s (1.12×)
Wasmtime-fuel .587s (3.11×) 1.08s (3.07×)
Wasm3 5.38s (28.5×) 10.1s (30.0×)

Table 5: Groth16 and Plonk zero-knowledge proof verification
time on the 7950X (x64) and M2 (A64) machines. Times are
shown along with the slowdown factor relative to native code.

via binary translation, this can come with a significant perfor-
mance loss, and sacrifices security benefits by introducing a
binary translator after verification. Depending on the binary
translator, the overhead of translation can be estimated to be
around 25%-65% on average for high-performance binary
translators [19, 22]. Additionally, a binary translator designed
for sandboxing (e.g., using Cranelift as a backend) may have
further overheads.

Compiler Toolchain Since the x86-64 and Arm64 instruc-
tion sets bundle SIMD and floating point together in the same
extension, compilers likewise cannot separate the two. DeCl’s
verifier allows SIMD instructions while prohibiting floating,
which presents challenges with existing compiler toolchains.
In particular, it is not possible to enable soft-float support
while also keeping SIMD enabled—the compiler only sup-
ports enabling/disabling FP/SIMD as a single unit. Currently,
we just enable FP/SIMD and catch floating point instructions
in the verifier, either rejecting the program, or replacing them
with nops. A better solution would be to modify the compiler
to allow soft-float and hardware integer SIMD to coexist.

Fragility and Hardware Bugs As part of our threat model,
we assume that the hardware within the subset of instructions
we allow is trustworthy. While this is likely to hold in practice,
it is not necessarily the case. Hardware bugs can occur due to
overclocking or slow degradation of the silicon, or can occur
due to an error in the hardware design. The former results in
glitches that happen sporadically, while the latter is typically
restricted to a particular microarchitecture, but deterministi-
cally causes a glitch until the hardware vendor releases a fix.
Smart contracts already run within byzantine-fault-tolerant
systems, and these hardware faults are infrequent and inde-
pendent enough that as a result they are unlikely to cause
issues in practice. Hardware bugs are likely easier to exploit
in DeCl than in a JIT-based system, though in many cases they
may still be exploitable in both, and are likely much more

difficult/impossible to exploit in an interpreter-based system.
Once instruction sequences that trigger hardware bugs are
discovered, the verifier can be patched to detect them. If there
are existing programs with these sequences, those programs
must either be disabled or run in an emulator. Note that since
our scheme allows the program to read its own code, the em-
ulator must provide the illusion that the old unpatched code
is running, while actually running a different sequence that
does not trigger the hardware bug. A different SFI scheme
could be chosen to avoid this issue—one which would strictly
separate code and data into distinct 4GiB regions.

9 Related Work

Fast & Secure Sandboxing Any replicated state machine
that runs untrusted programs requires a sandbox that both
runs deterministically and can preempt a contract after an
execution limit. Bitcoin [39] achieves deterministic termi-
nation with a scripting language without loops [6], while
other blockchains run more complex virtual machines like
WebAssembly [24], eBPF [37], or the Ethereum Virtual Ma-
chine [55]. Our approach is a variant of Software Fault Iso-
lation [36, 50, 54, 57, 58], which instruments native code and
verifies that the code cannot escape the sandbox. We build on
top of the existing Lightweight Fault Isolation project [57].
A recent proposal for Ethereum suggests using RISC-V ma-
chine code as the language of smart contracts [14], which
could make use of our technique to allow smart contracts to
execute natively on appropriate hardware rather than in an
emulator.

These sandbox designs face three key challenges in prac-
tical systems, beyond the requirements of deterministic, me-
tered execution. First, they must run as fast as possible; any
overhead reduces overall system throughput, leading to higher
fees for end-users. Executing smart contracts is a key bottle-
neck in some blockchains today [25]. Techniques like opti-
mistic concurrency control [23], speculative execution [16],
or selective transaction (re)ordering [34, 44, 48, 52, 56] can
provide throughput improvements, but these approaches are
complementary to faster sandboxing.

Second, any sandbox must execute code securely; any pos-
sibility of reading or writing data outside of the sandbox can
introduce non-determinism, which can cause two replicas
of a state machine to disagree on system state. Translating
the bytecode of an IL into efficient machine code is a com-
plex task. Security relies on the correctness of key tools, like
the eBPF verifier or a WebAssembly compiler, which are
large software systems that have previously contained seri-
ous bugs [2, 4, 29]. Approaches include software bytecode
interpreters, to minimize complexity (at the cost of runtime
overhead), simplifying a JIT compiler [7], formal verification
of the compiler [53].

Program Metering Mellor-Crummey et al. implement a
native-code instruction counter in software for profiling, us-
ing a reserved counter and instrumenting only the backwards
branches of a program [38]. Unlike this approach, our me-
tering technique must be verifiable so that the verifier can
guarantee that programs are properly metered.

Wasmtime considered a proposal for slacked metering [51],
which is similar to our timer-based metering, but it was never
fully implemented.

Determinism One example application of determinism is
efficiently distributing computation across many machines,
as performed by gg [21]. Another example is the Exokernel
file system, XN [30], which allowed applications to supply
their own code for parsing file system data structures as un-
trusted deterministic functions or UDFs. DeCl provides a
more efficient alternative to UDFs.

Record and replay systems [33, 35, 42, 47] can run unmodi-
fied, often parallel, programs in a deterministic way. These
work by running a program and capturing the results of any
non-deterministic operations. Then the program can be deter-
ministically replayed. However, this setting is non-adversarial
and does not provide bounded termination or isolation. In
a similar vein, Determinator [10] offers a deterministic OS
API that can handle parallel programs and is compatible with
conventional OS abstractions.

10 Conclusion

We presented Deterministic Client (DeCl), a software sand-
boxing system that can enforce that sandboxes are determin-
istic and metered, while running them at near-native speeds.
We explain how to guarantee deterministic execution of na-
tive code even in an adversarial setting, for the x86-64 and
Arm64 architectures. The verification process we describe
uses linear-time algorithms and, after some rewrites to the
assembly generated by the compiler, can accept programs
produced by LLVM. These properties make it possible for
DeCl to run smart contracts that are written as machine code
programs, enabling bare-metal smart contracts. We demon-
strate the feasibility of this approach by integrating DeCl into
Groundhog, a scalable smart contract engine.

Acknowledgements

We thank Emmett Witchel, Matthew Sotoudeh, Akshay Sri-
vatsan, and Michael Paper and the anonymous reviewers for
their valuable feedback. This material is based upon work
supported by the Stanford IOG Research Hub and Future of
Digital Currency Initiative, and the National Science Foun-
dation Graduate Research Fellowship under Grant No. DGE-
2146755.

References

[1] Mitigations for jump conditional code erratum. https:
//www.intel.com/content/dam/support/us/en/
documents/processors/mitigations-jump-con
ditional-code-erratum.pdf, November 2019.

[2] CVE-2021-32629. https://www.cve.org/CVERecor
d?id=CVE-2021-32629, May 2021.

[3] CVE-2023-20593. https://www.cve.org/CVERecor
d?id=CVE-2023-20593, July 2023.

[4] CVE-2023-26489. https://www.cve.org/CVERecor
d?id=CVE-2023-26489, March 2023.

[5] Redundant prefix issue. https://www.intel.com/co
ntent/www/us/en/developer/articles/technic
al/software-security-guidance/advisory-gui
dance/redundant-prefix-issue.html, November
2023.

[6] Bitcoin wiki: Script. https://en.bitcoin.it/wiki
/Script, 2024.

[7] Cranelift. https://cranelift.dev/, 2024.

[8] Introducing sp1: A performant, 100% open-source,
contributor-friendly zkvm. https://blog.succinct.
xyz/introducing-sp1/, 2 2024.

[9] Bytecode Alliance. Wasmtime, 2023. URL: https:
//wasmtime.dev/.

[10] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan
Ford. Efficient system-enforced deterministic paral-
lelism. In 9th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 10), 2010.

[11] Paulo SLM Barreto, Ben Lynn, and Michael Scott. Con-
structing elliptic curves with prescribed embedding de-
grees. In Security in Communication Networks: Third In-
ternational Conference, SCN 2002 Amalfi, Italy, Septem-
ber 11–13, 2002 Revised Papers 3, pages 257–267.
Springer, 2003.

[12] Paulo SLM Barreto and Michael Naehrig. Pairing-
friendly elliptic curves of prime order. In International
workshop on selected areas in cryptography, pages 319–
331. Springer, 2005.

[13] Sean Bowe. Bls12-381: New zk-snark elliptic curve
construction. https://electriccoin.co/blog/new
-snark-curve/, mar 2017.

[14] Vitalik Buterin. Long-term l1 execution layer proposal:
replace the evm with risc-v. https://ethereum-mag
icians.org/t/long-term-l1-execution-layer
-proposal-replace-the-evm-with-risc-v/236
17, 2025.

[15] Vitalik Buterin and Christian Reitwiessner. Eip-197:
Precompiled contracts for optimal ate pairing check on
the elliptic curve alt_bn128. Technical report, Ethereum
Improvement Proposals, 2018.

[16] Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen,
Lidong Zhou, Yajin Zhou, and Xian Zhang. Forerunner:
Constraint-based speculative transaction execution for
ethereum. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles, pages 570–
587, 2021.

[17] Quentin Colombet. Commit 7f4f923, 2014. URL: http
s://github.com/llvm-mirror/llvm/commit/7f
4f923aa57ad8d7ed3f84c532b583f590a68a49.

[18] Alexis Engelke. Fadec — fast decoder for x86-32 and
x86-64 and encoder for x86-64, 2024. URL: https:
//github.com/aengelke/fadec.

[19] Alexis Engelke and Martin Schulz. Instrew: lever-
aging llvm for high performance dynamic binary in-
strumentation. In Proceedings of the 16th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, VEE ’20, page 172–184, New
York, NY, USA, 2020. Association for Computing Ma-
chinery. doi:10.1145/3381052.3381319.

[20] Chris Fallin. Cranelift: implement "precise store traps"
in presence of store-tearing hardware., 2024. URL: ht
tps://github.com/bytecodealliance/wasmtime
/pull/8221.

[21] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li,
Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia,
and Keith Winstein. From laptop to lambda: Out-
sourcing everyday jobs to thousands of transient func-
tional containers. In 2019 USENIX Annual Techni-
cal Conference (USENIX ATC 19), pages 475–488,
Renton, WA, July 2019. USENIX Association. URL:
http://www.usenix.org/conference/atc19/pres
entation/fouladi.

[22] Andrei Frumusanu. The 2020 mac mini unleashed:
Putting apple silicon m1 to the test, 2020. URL: https:
//www.anandtech.com/show/16252/mac-mini-a
pple-m1-tested/6.

[23] Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang,
George Danezis, Zekun Li, Dahlia Malkhi, Yu Xia, and
Runtian Zhou. Block-stm: Scaling blockchain execution
by turning ordering curse to a performance blessing. In
Proceedings of the 28th ACM SIGPLAN Annual Sympo-
sium on Principles and Practice of Parallel Program-
ming, pages 232–244, 2023.

https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf
https://www.intel.com/content/dam/support/us/en/documents/processors/mitigations-jump-conditional-code-erratum.pdf
https://www.cve.org/CVERecord?id=CVE-2021-32629
https://www.cve.org/CVERecord?id=CVE-2021-32629
https://www.cve.org/CVERecord?id=CVE-2023-20593
https://www.cve.org/CVERecord?id=CVE-2023-20593
https://www.cve.org/CVERecord?id=CVE-2023-26489
https://www.cve.org/CVERecord?id=CVE-2023-26489
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/redundant-prefix-issue.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/redundant-prefix-issue.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/redundant-prefix-issue.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/redundant-prefix-issue.html
https://en.bitcoin.it/wiki/Script
https://en.bitcoin.it/wiki/Script
https://cranelift.dev/
https://blog.succinct.xyz/introducing-sp1/
https://blog.succinct.xyz/introducing-sp1/
https://wasmtime.dev/
https://wasmtime.dev/
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://ethereum-magicians.org/t/long-term-l1-execution-layer-proposal-replace-the-evm-with-risc-v/23617
https://ethereum-magicians.org/t/long-term-l1-execution-layer-proposal-replace-the-evm-with-risc-v/23617
https://ethereum-magicians.org/t/long-term-l1-execution-layer-proposal-replace-the-evm-with-risc-v/23617
https://ethereum-magicians.org/t/long-term-l1-execution-layer-proposal-replace-the-evm-with-risc-v/23617
https://github.com/llvm-mirror/llvm/commit/7f4f923aa57ad8d7ed3f84c532b583f590a68a49
https://github.com/llvm-mirror/llvm/commit/7f4f923aa57ad8d7ed3f84c532b583f590a68a49
https://github.com/llvm-mirror/llvm/commit/7f4f923aa57ad8d7ed3f84c532b583f590a68a49
https://github.com/aengelke/fadec
https://github.com/aengelke/fadec
https://doi.org/10.1145/3381052.3381319
https://github.com/bytecodealliance/wasmtime/pull/8221
https://github.com/bytecodealliance/wasmtime/pull/8221
https://github.com/bytecodealliance/wasmtime/pull/8221
http://www.usenix.org/conference/atc19/presentation/fouladi
http://www.usenix.org/conference/atc19/presentation/fouladi
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested/6
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested/6
https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested/6

[24] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and JF Bastien. Bringing the web
up to speed with webassembly. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2017, page
185–200, New York, NY, USA, 2017. Association for
Computing Machinery. doi:10.1145/3062341.3062
363.

[25] Lioba Heimbach, Quentin Kniep, Yann Vonlanthen, and
Roger Wattenhofer. Defi and nfts hinder blockchain scal-
ability. In International Conference on Financial Cryp-
tography and Data Security, pages 291–309. Springer,
2023.

[26] Intel. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual, 2024. Vol. 2A 3-125.

[27] Intel. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual, 2024. Vol. 2B 4-639–4-641.

[28] Intel. Intel® 64 and IA-32 Architectures Software De-
veloper’s Manual, 2024. Vol. 1 A-1–A-4.

[29] Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams,
Michael V. Le, and Tianyin Xu. Kernel extension verifi-
cation is untenable. In Proceedings of the 19th Workshop
on Hot Topics in Operating Systems, HOTOS ’23, page
150–157, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3593856.3595
892.

[30] M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Hector M. Briceño, Russell Hunt, David Maz-
ières, Thomas Pinckney, Robert Grimm, John Jannotti,
and Kenneth Mackenzie. Application performance
and flexibility on exokernel systems. In Proceedings
of the Sixteenth ACM Symposium on Operating Sys-
tems Principles, SOSP ’97, page 52–65, New York,
NY, USA, 1997. Association for Computing Machinery.
doi:10.1145/268998.266644.

[31] Taechan Kim and Razvan Barbulescu. Extended tower
number field sieve: A new complexity for the medium
prime case. In Annual international cryptology confer-
ence, pages 543–571. Springer, 2016.

[32] Wasm3 Labs. Wasm3, 2024. URL: https://github
.com/wasm3/wasm3.

[33] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
parallel programs with instant replay. IEEE Trans. Com-
put., 36(4):471–482, April 1987. doi:10.1109/TC.1
987.1676929.

[34] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria:
a fast and practical deterministic oltp database. Proc.
VLDB Endow., 13(12):2047–2060, July 2020. doi:
10.14778/3407790.3407808.

[35] Ali José Mashtizadeh, Tal Garfinkel, David Terei, David
Mazieres, and Mendel Rosenblum. Towards practical
default-on multi-core record/replay. In Proceedings of
the Twenty-Second International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, ASPLOS ’17, page 693–708, New York,
NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3037697.3037751.

[36] Stephen McCamant and Greg Morrisett. Evaluating
sfi for a cisc architecture. In Proceedings of the 15th
Conference on USENIX Security Symposium - Volume
15, USENIX-SS’06, USA, 2006. USENIX Association.

[37] Steven McCanne and Van Jacobson. The bsd packet
filter: A new architecture for user-level packet capture.
In USENIX winter, volume 46, pages 259–270, 1993.

[38] John M Mellor-Crummey and Thomas J LeBlanc. A
software instruction counter. ACM SIGARCH Computer
Architecture News, 17(2):78–86, 1989.

[39] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic
cash system. 2008.

[40] Shravan Narayan, Tal Garfinkel, Evan Johnson, Zachary
Yedidia, Yingchen Wang, Andrew Brown, Anjo
Vahldiek-Oberwagner, Michael LeMay, Wenyong
Huang, Xin Wang, Mingqiu Sun, Dean Tullsen, and
Deian Stefan. Segue & colorguard: Optimizing sfi
performance and scalability on modern architec-
tures. In Proceedings of the 30th ACM International
Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume
1, ASPLOS ’25, page 987–1002, New York, NY,
USA, 2025. Association for Computing Machinery.
doi:10.1145/3669940.3707249.

[41] Yasuyuki Nogami, Masataka Akane, Yumi Sakemi,
Hidehiro Kato, and Yoshitaka Morikawa. Integer vari-
able χ–based ate pairing. In International Conference on
Pairing-Based Cryptography, pages 178–191. Springer,
2008.

[42] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. Engineering
record and replay for deployability. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages
377–389, Santa Clara, CA, July 2017. USENIX Associ-
ation. URL: https://www.usenix.org/conferenc
e/atc17/technical-sessions/presentation/o
callahan.

https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3593856.3595892
https://doi.org/10.1145/3593856.3595892
https://doi.org/10.1145/268998.266644
https://github.com/wasm3/wasm3
https://github.com/wasm3/wasm3
https://doi.org/10.1109/TC.1987.1676929
https://doi.org/10.1109/TC.1987.1676929
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.1145/3037697.3037751
https://doi.org/10.1145/3669940.3707249
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan

[43] Keith Packard. picolibc - a c library designed for em-
bedded 32- and 64- bit systems., 2024. URL: https:
//github.com/picolibc/picolibc.

[44] Guna Prasaad, Alvin Cheung, and Dan Suciu. Handling
highly contended oltp workloads using fast dynamic par-
titioning. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages
527–542, 2020.

[45] Geoffrey Ramseyer and David Mazières. Groundhog:
Linearly-scalable smart contracting via commutative
transaction semantics. arXiv preprint arXiv:2404.03201,
2024.

[46] Christian Reitwiessner. Eip-196: Precompiled contracts
for addition and scalar multiplication on the elliptic
curve alt_bn128. Technical report, Ethereum Improve-
ment Proposals, 2018.

[47] Michiel Ronsse and Koen De Bosschere. Recplay: a
fully integrated practical record/replay system. ACM
Trans. Comput. Syst., 17(2):133–152, May 1999. doi:
10.1145/312203.312214.

[48] Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta,
Meihui Zhang, Gang Chen, and Beng Chin Ooi.
A transactional perspective on execute-order-validate
blockchains. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data,
SIGMOD ’20, page 543–557, New York, NY, USA,
2020. Association for Computing Machinery. doi:
10.1145/3318464.3389693.

[49] Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito,
and Riad S. Wahby. Pairing-Friendly Curves. Internet-
Draft draft-irtf-cfrg-pairing-friendly-curves-11, Internet
Engineering Task Force, November 2022. Work in
Progress. URL: https://datatracker.ietf.o
rg/doc/draft-irtf-cfrg-pairing-friendly-c
urves/11/.

[50] David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko,
Egor Pasko, Karl Schimpf, Bennet Yee, and Brad Chen.
Adapting software fault isolation to contemporary CPU
architectures. In 19th USENIX Security Symposium,
Washington, DC, USA, August 11-13, 2010, Proceedings,
pages 1–12. USENIX Association, 2010. URL: http:
//www.usenix.org/events/sec10/tech/full_pa
pers/Sehr.pdf.

[51] Sergei Shulepov. Slacked fuel metering, 2022. URL:
https://github.com/bytecodealliance/wasmti
me/issues/4109.

[52] Alexander Thomson, Thaddeus Diamond, Shu-Chun
Weng, Kun Ren, Philip Shao, and Daniel J Abadi.

Calvin: fast distributed transactions for partitioned
database systems. In Proceedings of the 2012 ACM
SIGMOD international conference on management of
data, pages 1–12, 2012.

[53] Alexa VanHattum, Monica Pardeshi, Chris Fallin,
Adrian Sampson, and Fraser Brown. Lightweight, mod-
ular verification for webassembly-to-native instruction
selection. ASPLOS, 2024.

[54] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and
Susan L. Graham. Efficient software-based fault iso-
lation. In Andrew P. Black and Barbara Liskov, edi-
tors, Proceedings of the Fourteenth ACM Symposium on
Operating System Principles, SOSP 1993, The Grove
Park Inn and Country Club, Asheville, North Carolina,
USA, December 5-8, 1993, pages 203–216. ACM, 1993.
doi:10.1145/168619.168635.

[55] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 151(2014):1–32, 2014.

[56] Yu Xia, Xiangyao Yu, William Moses, Julian Shun, and
Srinivas Devadas. Litm: a lightweight deterministic
software transactional memory system. In Proceedings
of the 10th International Workshop on Programming
Models and Applications for Multicores and Manycores,
pages 1–10, 2019.

[57] Zachary Yedidia. Lightweight fault isolation: Practical,
efficient, and secure software sandboxing. In Proceed-
ings of the 29th ACM International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, Volume 2, ASPLOS ’24, page 649–665,
New York, NY, USA, 2024. Association for Computing
Machinery. doi:10.1145/3620665.3640408.

[58] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley
Chen, Robert Muth, Tavis Ormandy, Shiki Okasaka,
Neha Narula, and Nicholas Fullagar. Native client: a
sandbox for portable, untrusted x86 native code. Com-
mun. ACM, 53(1):91–99, 2010. doi:10.1145/162917
5.1629203.

[59] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbren-
ner, and Christopher W. Fletcher. Synchronization stor-
age channels (S2C): Timer-less cache Side-Channel
attacks on the apple m1 via hardware synchroniza-
tion instructions. In 32nd USENIX Security Sympo-
sium (USENIX Security 23), pages 1973–1990, Ana-
heim, CA, August 2023. USENIX Association. URL:
https://www.usenix.org/conference/usenixse
curity23/presentation/yu-jiyong.

https://github.com/picolibc/picolibc
https://github.com/picolibc/picolibc
https://doi.org/10.1145/312203.312214
https://doi.org/10.1145/312203.312214
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1145/3318464.3389693
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
http://www.usenix.org/events/sec10/tech/full_papers/Sehr.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Sehr.pdf
http://www.usenix.org/events/sec10/tech/full_papers/Sehr.pdf
https://github.com/bytecodealliance/wasmtime/issues/4109
https://github.com/bytecodealliance/wasmtime/issues/4109
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/3620665.3640408
https://doi.org/10.1145/1629175.1629203
https://doi.org/10.1145/1629175.1629203
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jiyong
https://www.usenix.org/conference/usenixsecurity23/presentation/yu-jiyong

	Introduction
	Background
	Threat Model
	Secure Machine Code Analysis

	Deterministic Machine Code
	Arm64
	x86-64
	Preventing undefined results
	Preventing use of undefined flags
	Spurious prefixes

	CPU Fuzzing

	Deterministic Metering
	Aligned Bundles
	Branch-based Metering
	Removing gas checks

	Timer-based Metering

	Integration with Lightweight Sandboxing
	Background: LFI
	Position-Oblivious Code
	Other Modifications to LFI

	Implementation
	Compiler
	Static Verifier
	Enforcing Metering

	Evaluation
	General Performance
	Application to Smart Contracts
	Optimizing Startup and Teardown
	Native Cryptography Primitives

	Limitations
	Related Work
	Conclusion

