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Abstract
Incremental parsing is an integral part of code analysis per-

formed by text editors and integrated development environ-

ments. This paper presents new methods to significantly

improve the efficiency of incremental parsing for Parsing

Expression Grammars (PEGs). We build on Incremental Pack-
rat Parsing, an algorithm that adapts packrat parsing to an

incremental setting, by implementing the memoization table

as an interval tree with special support for shifting intervals,

and modifying the memoization strategy to create tree struc-

tures in the table. Our approach enables reparsing in time

logarithmic in the size of the input for typical edits, com-

pared with linear-time reparsing for Incremental Packrat

Parsing. We implement our methods in a prototype called

GPeg, a parsing machine for PEGs with support for dynamic

parsers (an important feature for extensibility in editors).

Experiments show that GPeg has strong performance (sub-

5ms reparse times) across a variety of input sizes (tens to

hundreds of megabytes) and grammar types (from full lan-

guage grammars to minimal grammars), and compares well

with existing incremental parsers. As a complete example,

we implement a syntax highlighting library and prototype

editor using GPeg, with optimizations for these applications.

CCSConcepts: • Software and its engineering→Parsers.
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1 Introduction
Automated tooling for managing and analyzing source code

is important to developer productivity, and fundamentally
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Figure 1. Replicated results from Incremental Packrat Pars-
ing, using the original ES5 grammar and 891 edits from their

evaluation. This graph shows the linear scaling of the origi-

nal algorithm. In this paper, we show how to improve the

algorithm to give reparse times that are logarithmic in the

file size, showing sub-5ms reparse times for much larger files

with significantly less memory overhead.

relies on parsing. Text editors and integrated development

environments tend to include source code analysis tooling

so that programmers can see feedback immediately as they

edit code. The problem of parsing therefore becomes more

difficult because it is not efficient to parse the document from

scratch after every edit. In many cases, it is not necessary

either, as an edit changes only a small part of the overall

parse tree. Incremental parsing algorithms provide methods

for reparsing only the necessary subsets of the document

after an edit, while still providing the same resulting parse

tree.

Incremental Packrat Parsing [3] is an existing algorithm

for incremental parsing built on packrat parsing – a parsing

strategy that involves saving parse results for reuse. Incre-

mental Packrat Parsing makes a small modification to pack-

rat parsing and to make it suitable for incremental settings.

As a result it is easy to modify existing packrat parsers to be

incremental. However, implementations in prior work use

traditional data structures and strategies for memoization.

These techniques are not ideal for incremental parsing and

result in only a constant improvement to reparse time (rather

than asymptotic improvement with respect to the input size).

Figure 1 shows that the reparse performance of incremental

packrat parsing quickly degrades as the input size grows.

https://doi.org/10.1145/3486608.3486900
https://doi.org/10.1145/3486608.3486900
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In this paper, we rethink the fundamental implementation

of the incremental packrat parsing algorithm in order to sig-

nificantly improve reparse time. We use a new data structure

for the memoization table, and present a new memoization

strategy that can efficiently handle large amounts of linear

repetition – for example, caused by a Kleene star expression

p*. The result is an implementation of incremental packrat

parsing that provides improvements to the asymptotic run-

time of the reparse in the common case. With our changes,

reparse time is logarithmic rather than linear, in the size of

the input for common edits
1
and grammars. Using these new

strategies, we are also able to aggressively prune the memo-

ization table, resulting in significantly less memory overhead.

Experiments with our prototype show that reparse time is

not substantially affected by the size of the input, and can

efficiently handle a wide variety of grammar types. We show

that these changes to incremental packrat parsing make it

applicable to workloads such as syntax highlighting and full

language parsing for very large files.

Wemake three primarymodifications to incremental pack-

rat parsing:

1. The memoization table structure is an interval tree

so that it can efficiently handle overlap queries. We

also describe the modifications that were necessary to

implement our incremental parser.

2. The memoization table handles shifts in the position

of the text efficiently by applying them lazily.

3. Thememoization strategymemoizes as a tree structure

the linear repetition caused by the Kleene star operator.

This modification also makes further optimizations in

space usage practical, such as a memoization threshold

to prevent small entries beingmemoized (since the tree

structure automatically creates large entries).

In addition to these algorithm modifications, we provide

a complete implementation with three artifacts:

1. GPeg
2
: a PEG parsing machine that has been aug-

mented with support for incremental parsing.

2. Flare
3
: a syntax highlighting engine with a simple

grammar language that can easily define new lan-

guages. Because GPeg is not a static parser generator,

these languages can be added and loaded at runtime.

3. Demo editor: we use Flare to implement a prototype

editor and in doing so make some additional optimiza-

tions, primarily to ensure that memory usage stays

reasonable, even for large files (tens of megabytes).

2 Related Work
Incremental Packrat Parsing [3] is the algorithm that we build

on in this work, and can be used to easily adapt PEG packrat

parsers to be incremental. The algorithm itself is quite simple

1
Specifically, edits that modify the parse result only in a localized area.

2
Available at github.com/zyedidia/gpeg.

3
Available at github.com/zyedidia/flare.

and effective, and does not require any explicit support in

the grammar or editor/integrated application. However, the

original implementation uses strategies and data structures

that mean the reparse time is linear in the size of the docu-

ment, and memory usage cannot easily be restricted. Other

top-down incremental parsing algorithms have focused on

LL(1) grammars [16, 17], and are restrictive compared to

Incremental Packrat Parsing.

Alternative algorithms in incremental parsing mostly fo-

cus on implementations alongside LR parsers, first intro-

duced by Ghezzi and Mendrioli [9, 10]. Building on that

work, Wagner presents methods for optimally applying edits

to a parse tree generated by an LR parser [19, 20]. Wagner’s

algorithms are in some ways similar to the ones we propose

(with a heavy reliance on trees), but packrat parsing uses

an explicit cache (the memoization table), while incremental

LR parsing detects changes directly in the parse tree. The

explicit cache makes some space optimizations easier to im-

plement, particularly in editors or any case where only the

parse tree for a certain window of the input is needed. Pack-

rat parsing is also often used for parsing PEGs rather than

CFGs, which makes our algorithm better suited for incremen-

tal PEG parsing. Though Wagner provides no open-source

implementation, Tree-Sitter [4] is a recent project built on

his research that has been used for syntax highlighting and

more in multiple mainstream editors.

Papa Carlo [14] is a project that implements incremental

parsing for PEGs. It uses an approach where “fragments” in

the grammar are manually marked for caching, and the gram-

mar writer must ensure that the chosen fragments adhere to

some constraints. Papa Carlo’s fragments allow the reparse

stage to perform independent of the file size, but it appears

to use a linear-time algorithm to determine the portion of

the document that has changed and which fragments have

been modified.

We implement our incremental parser as a parsing ma-

chine. The concept of a parsing machine was first introduced

by Knuth [13]. More recently, parsing machines have been

used for parsing PEGs [11, 15], with an implementation in

the LPeg library [12]. Our GPeg is heavily based on this

research and uses the same core instructions and machine

organization, though we have had to make modifications

to captures and add support for memoization. NPeg [2] is

another PEG parsing machine written for the Nim program-

ming language.

3 Background
Incremental Packrat Parsing is best applied to parsing PEGs

because of their determinism. While packrat parsing can

be applied to non-PEG grammars, throughout the paper we

present the algorithm in the context of PEGs only.

https://github.com/zyedidia/gpeg
https://github.com/zyedidia/flare
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Top <- Expr !.
Expr <- Term ([+\-] Term)*
Term <- Factor ([*/] Factor)*
Factor <- Num / '(' Expr ')'
Num <- [0-9]+

Figure 2. Arithmetic expression PEG. The Top non-terminal

ensures that the entire input is a single arithmetic expression

by using the !. pattern.

3.1 Parsing Expression Grammars
A Parsing Expression Grammar (PEG) is a formalism for

specifying deterministic string recognizers [7]. A PEG de-

fines a top-down recursive descent parser by specifying a

set of non-terminals and their corresponding patterns. PEG

definitions are similar to context-free grammars, using sim-

ilar notation for repetition, ranges, and literals, except for

some key differences: the choice operator, and predicates for

unbounded lookahead.

In a PEG, the choice operator, written ‘/’, is a prioritized
choice. The pattern a / b must attempt to match a before
it attempts b. Thus b can match only if a does not match.

As a result, the choice operator in PEGs does not introduce

any ambiguity, whereas it can in context-free grammars.

One consequence of prioritized choice is that left-recursion

cannot be expressed in a PEG. An expression such as a <-
a / b would create an infinite loop where the parser always

attempts to match a without any way to exit.

PEGs also support negative and positive lookahead predi-

cates, written using the ‘!’ and ‘&’ operators. The expression
&p succeeds if p matches at the current location and fails

otherwise, consuming no input regardless. It attempts to

match the pattern p, then backtracks to the original point

where the match attempt began while preserving only the

knowledge of whether p matched or not. The expression

!p is the converse of &p: it fails if p matches and succeeds

otherwise. Note that &p is equivalent to !!p.
One common use of the Not predicate is to force the gram-

mar to consume characters until the end of the document.

The pattern !. succeeds if it is not possible to accept another
character, so placing this pattern at the end of the top-level

non-terminal ensures that the parse succeeds only if the

entire document is consumed by the non-terminal.

As an example, a PEG for an arithmetic expression lan-

guage is shown in Figure 2.

3.2 Packrat Parsing
Along with PEGs, Ford presented packrat parsing [6], which

can be used for efficiently parsing PEGs. Packrat parsing is

commonly used for parsing PEGs because it guarantees lin-

ear time parses even though PEGs support unlimited looka-

head [6]. It works by keeping a memoization table – a data

structure which allows the parser to remember the results

of attempting to parse a certain pattern starting at a certain

location. If the parser ever tries to reparse the same pattern

at that location, it can first check the memoization table for

an entry and if there is one simply use the information in

the entry instead of parsing the input. Parsing time is linear

because work is never duplicated and the grammar only has

a fixed number of patterns to try before it fails.

The memoization table is a key-value store where the key

is a pair (id,pos) which corresponds to a pattern or non-

terminal (uniquely identified by id) starting at a given loca-

tion pos in the input. The value is a memoization entry that

stores all the information produced by parsing from the pair

(id,pos):

1. The length of the match (or a special value ⊥ if the

pattern did not match).

2. A resulting parse tree (optional).

Patterns may be marked for memoization
4
. When the

parser attempts to match such a pattern at a certain position,

it will either succeed or fail. In both cases, the parser will

then insert an entry into the memoization table at (id,pos),
logging the result. Packrat parsing algorithms memoize ev-

ery non-terminal in the grammar. However, it is possible and

even desirable to use a different memoization strategy be-

cause the packrat strategy has significant memory overhead.

Note that using a different memoization strategy may cause

the parsing algorithm to become super-linear for pathologi-

cal cases [7].

An example of a packrat parser’s memoization table is

shown in Figure 3. The memo table in the figure is also aug-

mented with additional information for incremental parsing

as explained in the next section.

3.3 Incremental Packrat Parsing
Packrat parsing is appealing for the case of incremental pars-

ing because it keeps a memoization table of partial results.

Incremental Packrat Parsing is a simple and effective algo-

rithm that takes advantage of this.

As explained by Dubroy [3], a packrat parser can be mod-

eled by a function:

Parse : (G, s) → R

whereG is a grammar, s is an input string, and R is the parse

result (possibly a parse tree, or indication of success/failure).

An incremental packrat parser can be modeled similarly

by a function:

Parse : (G, s,M) → (M ′,R)

whereM andM ′ are memoization tables. WhenM is empty,

the incremental packrat parser is the same as the packrat

parser, except it exposes the resulting memoization table to

the user. IfM is not empty, then the parser will execute faster

4
Our notation uses {{ p }} to mark pattern p for memoization.
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2 + ( 3 4 *
8 ) / 3 0 0

Figure 3. Memoization table for an arithmetic expression, where only the Num non-terminal has been memoized (for the

purposes of the example). Blue indicates the characters that belong to the match, and red indicates additional examined

characters. A magenta entry indicates that the match was attempted at that location but failed, and examined the shown

character(s). Note there is no entry above the division symbol because the parser did not attempt to match Num at that location.

because it will be able to skip entries that were filled before

the parse even began.

Algorithm 1 Incremental Packrat Parse

1: M ← a new memoization table

2: s ← the initial input string

3: G ← the grammar

4: When an edit operation e occurs

5: s,M ← ApplyEdit(s,M, e)
6: M, res ← Parse(G, s,M)

After an initial parse, when an edit to the input string oc-

curs, parts of the memoization table become invalid. Evicting

these entries results in a valid memoization table which can

then be used as an input for reparsing. Dubroy introduces a

function for this:

ApplyEdit : (s,M, e) → (s ′,M ′)

where e is an edit consisting of two parts: an interval

[estart , eend), specifying the part of the document that is re-

moved, and a string of bytes etext which is then inserted at

estart .
5

Applying the edit consists of evicting all newly invalidated

memoization entries, and making sure the start positions of

all entries are properly shifted according to the edit (deletion

and/or insertion).

The incremental packrat parsing algorithm (Algorithm 1)

can thus be summarized as the following three steps that

must be performed when an edit is made:

1. Determine all memoization entries that are invalidated

by the edit and evict them from the memoization table

(performed by ApplyEdit).

2. Shift the start position of all memoization entries that

start after the edit (performed by ApplyEdit).

3. Reparse the document from the start using the modi-

fied memoization table (performed by Parse).

A memoization entry is invalidated by an edit if any of

the characters that were examined to make the match are

changed by the edit. Thus, in a memoization entry we must

5
Insertion and deletion are special cases where estart = eend , and |etext | = 0

respectively.

not only track how many characters were matched, but also

how many characters were examined to make the match.

Our memoization entry now stores:

1. The length of the match (or ⊥ if the pattern did not

match).

2. The number of characters examined tomake thematch.

3. The parse tree generated by matching by the pattern

(only if the pattern matched).

Since PEGs support unlimited lookahead, the number of

examined characters may be much larger than the length

of the match. A memoization entry at position p with ne
characters examined to make the match is invalidated by

an edit over the interval [estart , eend) if that interval overlaps
with [p,p + ne ).

Figure 3 shows an example memoization table after pars-

ing an arithmetic expression. The table stores entries for

the Num non-terminal, with each entry tracking the starting

position, length, and examined length. Only entries that over-

lap with an edit are evicted, allowing reparses to reuse the

remaining entries without examining the unchanged text.

4 Improving Incremental Packrat Parsing
The incremental packrat parsing algorithm is effective for

improving the performance of reparses, but the original im-

plementation does not improve the asymptotic complexity of

reparsing compared to the initial parse. This is because it uses

a traditional memoization table structure, which provides

efficient indexing of (id,pos) keys, but has linear complexity

for interval overlap queries (step 1) and applying shifts (step

2). Additionally, traditional memoization strategies (memo-

ize every non-terminal) result in high memory usage, and

linear time for step 3 for flat grammars (grammars without

much nesting of non-terminals).

Using non-traditional memoization table data structures

and a packrat parsing strategy tailored for reparsing, we

can achieve logarithmic performance for reparsing in the

common case.
6

The problem with evicting entries that overlap with the

edit (step 1) is that an array or hashtable memoization ta-

ble is not well-suited to computing interval-overlap queries.

6
Since an edit can completely destroy the parse tree (e.g., opening amultiline

comment at the top of the document), worst case complexity is still linear.
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Solving this requires a change of data structure. In particu-

lar, we can implement the memoization table as an interval

tree, which supports overlap queries in logarithmic time.

Applying shifts (step 2) is still a problem, but with some

augmentations to the interval tree we can also significantly

improve performance there.

4.1 Interval Tree
An interval tree is an augmented binary search tree that

stores a set of n intervals. It can perform the following oper-

ations:

• Insert a new interval: O(logn).
• Delete an interval: O(logn).
• Find the interval starting at a location/key: O(logn).
• Query for all intervals that overlap with a specified

interval:O(m + logn), wherem is the number of over-

lapping intervals (size of the result).

The interval tree provides an ideal solution to evicting

invalidated entries because the intervals that overlap with

the edit can be found in logarithmic time.

Implementing an interval tree involves augmenting a bi-

nary search tree. Each node in the tree corresponds to an

interval, and that node is sorted based on the start position

of the interval. In addition, each node in the tree stores the

maximum position of any interval in its children. This al-

lows the overlap search to skip entire subtrees, resulting in

logarithmic time queries.

While the interval treemay be slower than an array ormap

for insertion and lookup, the difference between constant

time and logarithmic time (lookup/insertion) is not nearly as

significant as the difference between logarithmic time and

linear time (overlap query).

The Overlaps procedure (Algorithm 2) for interval trees

recursively finds all intervals in the tree that overlap with

the query interval. Each node makes sure to avoid subtrees

if it can guarantee the interval will not overlap with any

intervals in those subtrees. These guarantees can be made

because the maximum endpoints of every subtree are known,

and the right subtree is guaranteed to be only intervals to

the right of its parent node. Note that in an implementation

for incremental parsing, we would want to remove all over-

lapping entries during Overlaps rather than return them

for a slight performance improvement.

Our prototype implementation builds the interval tree

using an AVL tree as the underlying binary search tree. This

ensures that the tree remains balanced.

4.2 Lazy Shifts
Most edits to the document will involve the insertion or dele-

tion of characters. If an edit happens at position n, then
all memoization entries that begin at an index ≥ n will

need to shift their position by the number of characters

inserted/deleted (the shift information is a pair made from

Algorithm 2 Interval-Overlaps

1: procedure Overlaps(n, [l ,h), r )
2: if l > nmax then
3: return r
4: r ← Overlaps(nleft , [l ,h), r )
5: if HasOverlap([l ,h), ninterval) then
6: r ← r :: ninterval
7: if h < nstar t then
8: return r
9: r ← Overlaps(nright , [l ,h), r )
10: return r
11: procedure HasOverlap([l1,h1), [l2,h2))
12: return l1 < h2 ∧ h1 > l2

the index and size of the edit). In the worst case, where the

edit happens at the start of the document, every memoiza-

tion entry in the table will need to be shifted. If shifts are

immediately applied to every entry, this will clearly result in

shift application being an expensive linear-time operation.

Our solution is to apply shifts lazily, only as they are

needed. When a node in the tree (i.e., an interval) is read or

observed, it must make sure all shifts so far have been prop-

erly applied to it. When an edit occurs, the corresponding

shift is recorded in a global shift list, but does not have to

be applied to any nodes until specific nodes are observed

(e.g., during a lookup), and is never required to be applied to

all nodes at once. To enable this, each node in the interval

tree stores a timestamp that tracks its most recently applied

shift. When any data is requested from the node (such as its

interval end-points), it first applies any more recent shifts

from the global list.

The size of the global shift list is proportional to the num-

ber of edits that have been made so far. In order to prevent

unbounded growth, a reference counting approach can be

used to remove old shifts, or the entire list can be applied af-

ter a fixed number of edits. However, we find that in practice

it is reasonable to let the list grow indefinitely. The primary

issue is memory usage, which only becomes significant after

millions or billions of edits.

There are other approaches to handling shifts, for example

by using a fully lazy data structure where shifts are propa-

gated to individual nodes. Another possibility might include

a rope-like data structure where interval positions can be

calculated from relative information, avoiding the need to

store absolute positions. However, we find that the global list

approach is a good balance of simplicity and performance.

Relocatable Parse Results. If parse results (nodes in the

syntax tree produced by the parser) are to be stored in the

memoization table, they must be relocatable, meaning that

when a shift occurs the data stored by the parse result (such

as a starting location) is still valid. Dubroy et al. [3] solve this

problem by storing only the captured string in the parse tree
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(a) Linear memoization strategy. Each entry corresponds to a token (such as a keyword, operator, symbol, identifier, string, etc.).

(b) Tree memoization strategy. Larger entries are inserted above token entries that allow the parser to skip chunks of repeated tokens placed

together.

Figure 4. Resulting memoization table from the same input using two different strategies. The black arrow denotes an edit.

Black entries are evicted by the edit, and light blue entries are those looked up in the table during the subsequent reparse.

Red indicates characters examined by the corresponding entry. This example used a syntax highlighting grammar, so each

bottom-level entry corresponds to a single token, and the grammar is just a Kleene star repetition of the token pattern, allowing

for the tree memoization optimization to take place.

nodes. However, for many use-cases it is important to store

the position of the node, either for use by the source code

analysis or for error reporting.We can solve this issue by also

applying lazy shifts to the parse tree nodes. If nodes store

a reference and position offset to the memoization entry

they are contained in, the start position can be calculated

lazily. One consequence is that the memory size of captures

is increased by the need to store this reference and offset.

4.3 Tree Memoization
With our new memoization table data structure, we can in-

validate and evict entries from the table much faster. The

last step in the incremental packrat parsing algorithm is to

reparse from the start of the document, using the memoiza-

tion table to skip unchanged parts. The layout of entries in

the table will determine the efficiency of this reparse. If the

memoization table exhibits a linear structure, as shown in

Figure 4a, the reparse will be slow for large inputs, since the

parser will have to perform a number of memoization table

lookups that is proportional to the size of the file. Linear

structures can arise commonly in very large files (usually

the majority of a large file is a single repeated pattern). In

general, the repetition operator (Kleene star) is the root of

the problem because it leads to memoization structures that

have a linear rather than logarithmic structure.

Our solution is to change the memoization strategy for

the repetition operator. By using a special case for the Kleene

star operator we can force a tree structure rather than lin-

ear structure for the memoization of patterns of the form

{{ p }}*7. The goal is for the resulting memoization table

to resemble that of Figure 4b. With a tree structure in the

memoization table, any location in the document can be

reached by skipping through a logarithmic number of mem-

oization entries. This is shown visually in Figure 4: when an

edit occurs at the black arrow, the black entries are evicted

and the light blue entries are looked up during the subse-

quent reparse. In the linear structure every entry is looked

up, while in the tree structure large parent entries result in

only a logarithmic number of lookups.

Implementation. We now describe the changes to the

memoization table necessary to implement tree memoiza-

tion, and our algorithm for creating the tree structure while

parsing.

In order to implement tree memoization, two modifica-

tions to the memoization table are necessary. First, the mem-

oization table must be able to accommodate multiple entries

starting at the same location and ID, and thus with the same

key. This means that the interval tree must store an array of

entries per key. During a find operation, the tree should re-

turn the value associated with the largest interval matching

the requested key. This ensures the largest possible section

of the input is skipped.

7
Recall that {{ p }} denotes that p should be memoized.
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The second modification is necessary for the actual con-

struction of the tree structure during the parse. Memoization

entries must store a “count” that refers to the number of

repeated patterns stored in the entry. For example, if the

memoized pattern corresponds to the pattern p*, the count
will store the number of occurrences of p in the memoized

section of the input. Only entries that are created as a result

of tree memoization will have a count greater than 1.

While parsing a memoized Kleene star, {{ p }}*, the
parser executes a loop matching and memoizing p. The gen-
eral algorithm for tree memoization is to match p at each

iteration, push a new stack item corresponding to the match,

and then run a routine that traverses the stack and “merges”

items if they are large enough. When two stack items are

merged, a new memoization entry that covers both stack

items’ matches is inserted into the table. Note that when

the parser attempts to match p, it may either find an entry

already in the memoization table, possibly storing multiple

back-to-back occurrences of p (with a count greater than 1),

or it may attempt a direct match if nothing in the table is

found.

The stack items that are pushed during tree memoization

must store the following information:

• The position of the match.

• The count. This will be 1 for a direct match. If an entry

is found in the memoization table, this will be that

entry’s count.

• Depending on the parser implementation, the entry

may also contain a list of parse results that were made

while matching p or stored in the recovered memoiza-

tion entry.

At the end of each iteration, the parser traverses the stack

and inserts new “parent” memoization entries into the table.

As the parser scans down the stack, it sums the counts of

the stack items, and if it finds an item whose count is less

than or equal to the running sum, all the scanned items are

popped and a new stack item is pushed encompassing them

all (starting from the earliest start, with length to cover all

items, a count that is the sum of all counts, and all parse

results). This creates a tree structure that is also resistant to

new inserts/deletes in the input text.

Figure 5 shows a small example for the pattern {{ . }}*
matching the text “1234” to demonstrate how the tree is cre-

ated, and how it reacts when a new character is inserted.

As each occurrence of the repeated pattern (a single char-

acter in this case) is parsed, new memoization entries are

created along with new stack items. The post-match rou-

tine then traverses the stack and attempts to merge stack

items to create large parent entries. Note that in practice, a

memoization threshold (discussed in Section 4.4) will pre-

vent single-character or other small entries like those in this

example.

Figure 5. Tree memoization construction example showing

the input text, stack, and memoization table (some iterations

are condensed and some are expanded). Each stack item

stores a position, marked ‘p’, and a count, marked ‘c’. The

pattern being matched is {{ . }}*. The left column shows

the initial construction of the tree structure, and the right col-

umn shows reconstruction during a reparse after a character

is inserted.

4.4 Space Optimizations
Space usage is a common problem with packrat parsers be-

cause the memoization table can become very large. A simple

optimization is to introduce a threshold to avoid memoizing

entries that are below a certain length. In a standard incre-

mental packrat parser this can cause lots of useful informa-

tion to be discarded, specifically in cases where many small

tokens are repeated one after another. However, with the

tree-based memoization strategy presented in Section 4.3 we

can be much more aggressive with this optimization, since

repeated small tokens are guaranteed to be memoized under

larger parent entries. In fact, this optimization becomes very

powerful, allowing thresholds on the order of hundreds to

thousands of bytes. With a large enough threshold, the space

usage of the memoization table can be significantly reduced

from the size it would be with standard packrat parsing.

The more significant consumer of space (other than the

input itself) is then the resulting parse tree. We cannot take

the same approach as with the memoization table because

small results are needed in the parse tree. However, in many

cases, especially when using an editor, only a certain piece

of the parse tree is needed for processing. For example, only

the parse tree corresponding to the tokens in the currently

viewed window is needed for syntax highlighting or inden-

tation analysis. Therefore we can avoid constructing parse

results for tokens that do not overlap with the viewed inter-

val, saving greatly on space usage. This makes the space cost

of the parse result proportional to the editor window size

rather than the file size.
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We validate these two space optimizations in the eval-

uation section, and find that the end-to-end space cost of

syntax highlighting is quite reasonable even for very large

files.

4.5 Corner Cases
For typical edits, the reparse time will be logarithmic in the

size of the document. However, even small edits can require

reparsing of the entire document in certain cases. For exam-

ple, in a syntax highlighting grammar, inserting the start of

a multiline comment at the top of a document will cause the

entire document to become a comment, which does not use

any pre-existing information from the memoization table.

Another example occurs in languages which use multiline

strings. Deleting a quotation mark will flip following text in

the document – text previously in a string will no longer be

in a string and vice versa. Again, no saved information will

be used, resulting in non-logarithmic reparse time. However,

in both of these cases, the old information is still stored in

the memoization table, meaning if the edit is reverted then

reparsing will be fast. Reparsing will also be fast if the edit

is then re-applied.

5 Parsing Machine
Our improvements are implemented in a PEG parsing ma-

chine called GPeg. The full parsing machine is outside the

scope of this paper, so we try to distill the important parts of

the implementation in this section. If readers wish to learn

more about parsing machines, please see the LPeg parsing

machine [11, 15], and our GPeg implementation for the full

details.

When using a parsing machine, a grammar is compiled

into a set of instructions and then executed by the parsing

machine interpreter. This has a number of benefits, including

that grammars can be compiled and executed at runtime, and

do not need to be statically compiled and bundled with the

application.

In order to adapt the parsing machine approach to incre-

mental parsing, we had to make two modifications:

1. Parse results (called captures in the parsing machine),

such as syntax tree nodes, must be generated directly

during the parse rather than logged and generated by

a post-parse pass as in LPeg.

2. New memoization instructions must be introduced,

including special instructions for performing the tree

memoization strategy.

The parsing machine state consists of a set of registers and

a stack. The registers store information such as the current

instruction pointer (called ip) and the current position in the

input to examine (called sp). The stack can be used to store

backtracking and memoization information. Backtracking

works by pushing a special backtrack stack entry storing

an (ip, sp) pair to return to if necessary. The parsing ma-

chine supports a number of instructions that modify its state

and examine the input string. Each instruction moves the

instruction pointer, or sets it to a special fail state, during
which the machine repeatedly pops entries from the stack

and backtracks to their locations.

A grammar can be compiled into a list of instructions to

be run on the machine.

Some core example instructions are given below:

• Char b: advances ip by one instruction and consumes

one byte from the subject if it matches b and goes to

the fail state otherwise.

• Choice l : pushes a backtrack entry storing l and sp
so that the parser can return to this position in the

document later and parse a different pattern (stored at

l ).
• Commit l : pops the top entry off the stack and jumps to

l (setting ip = l). This allows the machine to commit

to a state and discard a backtrack entry.

• End: if the machine reaches this instruction the match

is declared a success, and the current sp corresponds

to the final matched character.

With these instructions, the pattern 'ab'/ 'yz' can be

compiled into a simple program:

Choice L1
Char 'a'
Char 'b'
Commit L2

L1: Char 'y'
Char 'z'

L2: End

This program first pushes a backtrack entry using the

Choice instruction. It then tries to match ‘a’ followed by

‘b.’ If either match fails, it will go to the fail routine, which

pops the backtrack entry and sets ip to L1 and sp back to 0.

Then it will attempt to match ‘yz.’ If matching ‘ab’ succeeds,

the commit instruction will discard the backtrack entry and

jump to the End instruction.

The full parsing machine supports additional instructions,

including function calls, capture and memoization instruc-

tions, and a large number of instructions for optimization.

5.1 Capture Mechanism
A capture is a parse result of the form:

(id, content , children) ∈ N × Content × ⟨Capture⟩.

It stores an ID, the “content,” and a list of child captures.

The structure of the content is left unspecified, but for ex-

ample may consist of a portion of the source text.

Incremental parsing requires captures to be computed

during the parse so that intermediate results can be stored

in memoization entries. This means we cannot use LPeg’s
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capture approach because it involves storing capture infor-

mation during the parse and constructing the actual captures

during a post-parse pass. Instead we must track captures dur-

ing the parse, via a top-level capture list.

Two instructions are added to support captures: Capture-
Begin ID, which creates a special capture stack entry, and

CaptureEnd, which pops the stack entry and constructs the

capture object. A pattern can then be captured by surround-

ing its compilation result with those two instructions:

CaptureBegin ID
<p>
CaptureEnd

The parser keeps a list of top-level captures, which are

returned when the parse completes. However when Cap-
tureEnd constructs a capture, it cannot add it directly to the

list because it is possible that the text after the capture will

cause the parser to fail and backtrack, invalidating the cap-

ture. As a result, we must store a list of captures in each stack

entry, and when the entry is popped it appends its list to the

entry above it. If there is no entry above it, the captures are

appended to the top-level list. When a stack entry is popped

in the fail routine, the captures are destroyed rather than

appended.

5.2 Memoization
Memoization in the parsing machine is implemented simi-

larly to captures, with a MemoOpen Label ID instruction and
MemoClose. The MemoOpen instruction searches the memo-

ization table for a pattern with ID at the current position.

If one is found, it jumps to Label, but if not it pushes a
stack item with the current position and ID. When Memo-
Close runs, it looks for a stack item pushed by MemoOpen
and constructs a memoization entry to insert into the table.

A pattern p can be memoized by compiling it as:

MemoOpen L1 ID
<p>
MemoClose

L1: ...

Tree memoization is a special case, where a pattern of the

form {{ p }}* is compiled using specialized tree instruc-

tions.

L1: MemoTreeOpen L3 ID
Choice L2
<p>

LN: MemoTreeInsert
L3: MemoTree

Jump L1
L2: MemoTreeClose

The MemoTreeOpen performs the first part of the tree mem-

oization algorithm by checking the memoization table and

pushing a stack item. If an entry is found, it jumps directly to

L3, which performs the stack traversal using the MemoTree

instruction. If no entry is found it attempts to match p and
insert an entry to the table before performing the stack tra-

versal with MemoTree. If matching <p> ever fails, the parser

exits the loop via the backtrack entry pushed by the Choice
instruction, and runs MemoTreeClose, which cleans up the

stack. The exact details of these instructions are outside the

scope of the paper, but this code provides an outline for how

the parsing machine implements tree memoization.

6 Syntax Highlighting
One of the primary applications of GPeg is syntax high-

lighting. While GPeg supports general incremental parsing,

syntax highlighting is one of the most common workloads

where incremental parsing is needed. We examine token
highlighting, a specific method of performing syntax high-

lighting where the language is analyzed at only the token

level (as opposed to using a full language grammar). Token

highlighting is a good example for testing GPeg because

these grammars produce very linear parse trees, which are

quite different from those produced by a full language gram-

mar. In addition, since a token highlighting grammar accepts

any input, no edit can cause a parse failure.

Creating a token highlighting grammar with GPeg is sim-

ple. We define patterns for each lexical element of the lan-

guage, such as keywords, comments, strings, etc. For exam-

ple, in Java
8
, the comment pattern may be defined as

9

comment <- line_comment / block_comment
line_comment <- '//' (!'\n' .)*
block_comment <- '/*' (!'*/' .)* '*/'?

Once we have similar patterns for keywords, strings and

other language elements, we define a token non-terminal

that attempts to match one of them:

token <- whitespace / keyword / comment / ...

The highlighter should then repeatedly attempt to con-

sume a token, if the pattern does not match, consume char-

acters until a match is found. This repetition pattern is the

top-level non-terminal of the grammar.

{{ token / . (!token .)* }}*

Since this is a repetition of a memoized pattern, we will

be able to take advantage of tree memoization for fast incre-

mental parse times. In the case where token does not match,

we continue to consume characters using (!token .)* until
a token matches. This ensures that a contiguous block of

characters that do not belong to a token are saved as a single

memoization entry.

As a demonstration, we built Flare
10
, a syntax highlighting

engine that uses GPeg with grammars of this form, with

support for 10 languages at the time of writing.

8
See Appendix A for the full Java grammar.

9
We could also define the block_comment using memoization as ’/*’ {{
(!’*/’ .) }}* ’*/’? to efficiently handle cases of extremely large block

comments.

10
Available at github.com/zyedidia/flare.

https://github.com/zyedidia/flare
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7 Evaluation
The experimental validation of GPeg is presented in three

sections:

1. Asymptotic scaling: we test GPeg’s performance on

increasingly large files to show that the reparse time

remains fast.

2. Per-edit performance: we show the reparse time re-

quired for each individual edit over the course of many

synthetic edits.

3. End-to-end editor: we integrate GPeg-powered syntax

highlighting into a prototype editor, and validate its

performance when integrated with all the additional

machinery that an editor requires. We also validate

the space usage optimization presented in Section 4.4.

Throughout the experiments we have tested against exist-

ing parsers, both incremental and traditional. We also per-

form our experiments using a variety of grammars: Java/JSON

for highly nested full-language grammars, and syntax high-

lighters for very flat grammars.

Throughout the experimental validation, we show:

• The reparse time is independent of the input size.

• Reparse performance scales well with many edits.

• The memory overhead of the memoization table and

relocatable captures can be high, but with certain op-

timizations it is manageable.

Reparse time and memory usage are the primary mea-

surements we are concerned with, and initial parse time

is secondary. In addition, we use the window space opti-

mization for captures since this most accurately models the

editor use-case. For workloads where the full syntax tree

is desired, parse nodes could be optimized for better space

performance compared to our implementation. We keep our
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Figure 6. Asymptotic scaling of the Java syntax highlighter.

The average reparse time over 1000 edits stays constant at

1ms while the initial parse time rises proportionally with

input size.

implementation since the parse tree does not consume sig-

nificant memory when the window optimization is applied

in an editor.

All experiments are performed on a machine running

Linux 5.4.0 with an AMD Ryzen 5 1600 CPU (mid-range

desktop CPU from 2017). GPeg is written in Go and is com-

piled with the Go 1.16 compiler.

7.1 Asymptotic Scaling
In the first experiment, we show how GPeg improves on

Incremental Packrat Parsing by replicating their experiment

(using their implementation, called Ohm). We perform 891

simulated edits on the original 279KB JavaScript file, and

duplicated versions of it, and compare the performance of

GPeg and Ohm in Figure 1 (presented during the introduc-

tion). As expected, Ohm exhibits linear scaling, in this case

primarily caused by linear behavior in ApplyEdit (invalidat-

ing memoization entries and shifting them). This is because

the memoization table is quite large (roughly 2,000,000 en-

tries). GPeg’s memoization table is the same size, but the lazy

interval tree enables much more efficient edit application,

and the performance stays flat. JavaScript is a highly nested

grammar and the file in question already exhibits a tree-like

structure, so our tree memoization optimization does not

provide a significant speedup in this case. In converting the

ES5 grammar to GPeg, we had to mark certain non-terminals

with explicit memoization because the grammar relied on

this behavior for handling recursion.

The next experiment shows asymptotic performance using

a Java syntax highlighting grammar. In this case we test on

larger files, ranging from 1 to 100 megabytes, constructed

by concatenating together source files from the OpenJDK7

project. Parse time scaling is shown in Figure 6. This shows

the initial parse time increasing roughly linearly (O(n logn))
while the reparse time stays constant at around 1ms.

Finally, we test reparse time with complete Java and JSON

grammars. Figure 7 shows that the reparse performance stays

flat as file size increases, and also compares GPeg’s initial

parse time with other PEG parsers: LPeg [12] (a similar VM

approach implemented in C) and a Go PEG parser generator

[18]. GPeg’s initial parse is similar to LPeg’s, but the native

PEG parser is faster, as expected.

7.2 Per-Edit Performance
We would like to ensure that the reparse time does not de-

grade as more edits are made. We apply a series of synthetic

edits to a Java file, and parse the result with a Java parser and

highlighter. Generating synthetic edits for the Java parser

requires some additional work, since random edits will cause

the input to become invalid Java almost immediately. We

generate edits that maintain the validity of the Java docu-

ment by using a small parser to extract elements such as

comments, strings, function names, etc. and then changing,
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(b) Java parser performance on files ranging in size from 50KB

to 2.5MB, from the Ceylon [8] and OpenJDK7 [1] projects.

Figure 7. Parser performance for JSON and Java datasets.

those elements in appropriate places. Edits for the Java high-

lighter are randomly generated, since no edit can cause the

input to become invalid.

Results are shown in Figure 8, where GPeg is also com-

pared with Tree-Sitter, a state-of-the-art non-PEG incremen-

tal parser. Tree-Sitter generates static native C parsers, com-

pared to GPeg’s dynamic parsers run in a VM written in Go.

GPeg’s performance is similar to Tree-Sitter’s, though GPeg

has a slower initial parse time. In Figure 8b, the random edits

stress Tree-Sitter’s error recovery mechanism since it is still

trying to apply a full Java grammar to perform highlighting,

rather than using a simpler token-based highlighter as with

GPeg. The two figures show rough comparisons, and help to

frame GPeg’s performance in the context of another incre-

mental parser from the perspective of scalability with large

files and numbers of edits, rather than in absolute time, due to

differences in grammars (CFG vs. PEG), capture generation,

and highlighting method.

7.3 Memoization Threshold
So far we have been using a memoization threshold of 128

bytes, which prevents any entries below the threshold from

being memoized. This threshold introduces a trade-off be-

tween memory usage and reparse time. If the threshold is
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(a) Full Java parsing of a 5 MB file. Edits are synthetically gener-

ated to maintain the validity of the Java program and are applied

as single-character changes. Tree-Sitter additionally generates

a syntax tree while this is disabled in GPeg.
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(b) Java highlighting of a 17 MB file. Edits are completely ran-

dom and clustered in chunks of 100 edits in the same location. At

each change we can see a spike in GPeg as shifts in that portion

of the interval tree are lazily applied. Tree-Sitter’s performance

degrades because it uses a full grammar for highlighting and

the random edits stress the error recovery.

Figure 8. Per-edit performance using a Java parser and highlighter. These benchmarks show that GPeg’s reparse time does

not degrade with the number of edits, and has similar scaling behavior to Tree-Sitter, a well-known incremental parser and

highlighter.
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Figure 9. Tradeoff between speed and space while high-

lighting a 26MB file. Each point marks a different choice of

memoization threshold. Memory usage consists only of the

input data and the memoization table.

low the memoization table will have high granularity, allow-

ing more re-use of parse results, but the table will have more

entries, and the reverse is true for a high threshold. We test

a variety of thresholds, and plot the Pareto optimal curve in

Figure 9, finding that 128-512 bytes is a good balance in our

experimental environment.

7.4 End-to-End Editor
As a complete validation of our incremental parser and syn-

tax highlighter, we implement a text editor with them. The

editor uses the window space optimization from Section 4.4,

and stores highlighting results in a table before applying

a configurable color theme and rendering the viewed win-

dow to the screen. With everything put together, we test

the editor performance by editing a 50 MB Java file. Actions

performed include inserting/deleting characters, seeking to

the end of the file, and scrolling. Throughout the actions we

observe mostly sub-5ms update time (Figure 10a) and rea-

sonable (roughly 2x) memory overhead (Figure 10b). Redraw

time is split between rehighlighting and actually rendering

the text to the screen.

8 Conclusion
In this paper we present new methods for incremental PEG

parsing. We build on Incremental Packrat Parsing by modify-

ing thememoization table data structure and parsing strategy

to tune the algorithm for incremental parsing. In particu-

lar, we present three primary optimizations: the use of an

interval tree as a memoization table, lazy shifting in the

interval tree, and a parsing strategy that ensures a tree struc-

ture for memoization entries in the table. Our changes allow

reparsing in time logarithmic in the size of the input for typ-

ical edits, compared to linear-time parsing with incremental

packrat parsing.

We implement a syntax highlighting library and text edi-

tor as demonstrations of our incremental parser and observe

strong performance, and show several optimizations to mem-

ory usage that are made possible by our incremental parsing

strategy.

We believe our results show that GPeg could serve as a

performant incremental parser and syntax highlighter in a

text editor, and we will be working to integrate it into the

next version of the Micro text editor.
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Figure 10. End-to-end editor performance and memory usage. “Handle event” includes the time to route the event to the

correct buffer and binding, apply the edit, and scroll the view. “Redraw screen” includes the time to perform rehighlighting,

render the screen to an internal cell buffer, and write the buffer to the terminal emulator.
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A Java Highlighter
The Java syntax highlighter used by Flare, based on a Scin-

tillua [5] lexer, is shown below. Grammars include some

built-in non-terminals such as float, integer, word, and
space, as well as functions for capturing (cap) and matching

a choice of individual words (words, which uses a specialized
feature to efficiently match a large alternation of words). The

top-level repetition pattern is automatically generated using

the token non-terminal as {{ token / . (!token .)*
}}*.

ws <- space+

line_comment <- '//' (!'\n' .)*
block_comment <- '/*' (!'*/' .)* '*/'?

comment <- cap{
line_comment / block_comment,
"comment"

}

sq_str <- "'" (escape / (!['\n] .))* "'"?
dq_str <- '"' (escape / (!["\n] .))* '"'?
escape <- cap{

'\\' ['"tnbfr\\],
"constant.string.escape"

}
string <- cap{sq_str / dq_str, "constant.string"}

number <- cap{
(float / integer) [LlFfDd]?,
"constant.number"

}

keyword <- cap{
words{

"abstract", "assert", "break", "case",
"catch", "class", "const", "continue",
"default", "do", "else", "enum",
"extends", "final", "for", "goto", "if",
"implements", "import", "instanceof",
"interface", "native", "new", "package",
"private", "protected", "public",
"return", "static", "strictfp", "super",
"switch", "synchronized", "this", "throw",
"throws", "transient", "try", "while",
"volatile"

},
"keyword"

}

bool <- cap{
words{

"true", "false", "null"
},
"constant.bool"

}

type <- cap{
words{

"boolean", "byte", "char", "double",
"float", "int", "long", "short", "void",
"Boolean", "Byte", "Character", "Double",
"Float", "Integer", "Long", "Short",
"String"

},
"type"

}

identifier <- cap{word, "identifier"}
operator <- cap{

[+\-/*%<>!=^&|?~:;.()\[\]{}],
"symbol.operator"

}
annotation <- cap{'@' word, "type.annotation"}
func <- cap{word, "function"} '('
class <- cap{'class', "keyword"}

space+ cap{word, "type.class"}

token <- ws / class / keyword / bool / type / func
/ identifier / string / comment / number
/ annotation / operator
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