Segue & ColorGuard: Optimizing SFI Performance and

Scalability on Modern Architectures

Shravan Narayan
UT Austin
Austin, USA

Zachary Yedidia
Stanford University
Stanford, USA

Anjo Vahldiek-Oberwagner
Intel Labs
Berlin, Germany

Xin Wang
Intel
Beijing, China

Tal Garfinkel
UC San Diego
San Diego, USA

Yingchen Wang
UC Berkeley
Berkeley, USA

Michael LeMay
Intel Labs
Hillsboro, USA

Minggqiu Sun
Intel
Hillsboro, USA

Deian Stefan
UC San Diego
San Diego, USA

Evan Johnson
UC San Diego
San Diego, USA

Andrew Brown
Intel
Hillsboro, USA

Wenyong Huang
Intel
Beijing, China

Dean Tullsen
UC San Diego
San Diego, USA

Abstract

Software-based fault isolation (SFI) enables in-process isola-
tion through compiler instrumentation of memory accesses,
and is a critical part of WebAssembly (Wasm). We present
two optimizations that improve SFI performance and scal-
ability: Segue uses x86-64 segmentation to reduce the cost
of instrumentation on memory accesses, e.g., it eliminates
44.7% of Wasm’s overhead on a Wasm-compatible subset of
SPEC CPU 2006, and reduces overhead of Wasm-sandboxed
font rendering in Firefox by 75%; ColorGuard leverages mem-
ory tagging (e.g., MPK), to enable up to a 15X increase in
the number of Wasm instances that can run concurrently in
a single address space, improving efficiency for high scale
server-side workloads. We also explore the challenges of de-
ploying these optimizations in three production toolchains:
Wasm2c, WAMR and Wasmtime.

CCS Concepts: « Security and privacy — Hardware se-
curity implementation; Browser security.

Keywords: SFI, Wasm, sandboxing, optimization

ACM Reference Format:
Shravan Narayan, Tal Garfinkel, Evan Johnson, Zachary Yedidia,
Yingchen Wang, Andrew Brown, Anjo Vahldiek-Oberwagner, Michael

@ @ This work is licensed under a Creative Commons
BY Attribution International 4.0 License.

ASPLOS °25, March 30-April 3, 2025, Rotterdam, Netherlands.

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0698-1/25/03
https://doi.org/10.1145/3669940.3707249

LeMay, Wenyong Huang, Xin Wang, Mingqiu Sun, Dean Tullsen,
and Deian Stefan. 2025. Segue & ColorGuard: Optimizing SFI Perfor-
mance and Scalability on Modern Architectures. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1 (ASPLOS
’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3669940.3707249

1 Introduction

Software-based fault isolation (SFI) [101] enforces isolation
using compiler instrumentation in place of traditional hard-
ware protection (e.g., page tables); thus, it avoids many of the
overheads that processes and VMs impose [45, 75], such as
high start-up times and expensive context switches. However,
current SFI techniques impose limitations on performance
and scalability. We introduce Segue and ColorGuard, two
optimizations that mitigate these limitations by uniquely
leveraging modern hardware.

Our optimizations were inspired by challenges faced in
production systems built on WebAssembly (Wasm) — which
critically relies on SFI. In recent years, Wasm has become an
essential part of the software ecosystem: billions use Wasm
daily in the browser [26, 29, 95, 96]; it provides extensibility
in datacenter infrastructure [79], SaaS applications [25], and
databases [91]; it mitigates memory safety vulnerabilities
through libraries sandboxing [35, 72]; and it is a key enabler
for high-scale low-latency edge-compute platforms from
Fastly [78], Cloudflare [57], Akamai [1], etc.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3669940.3707249
https://doi.org/10.1145/3669940.3707249

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

While Wasm’s success has led to a renaissance in SFI
technology, it has also brought greater attention to its limi-
tations: Efficiency — SFI overheads of 20%-30% or more are
common [55, 93, 111] — this impacts Wasm’s performance
across many classes of systems, and also limits its adoption.
For example, Firefox depends on Wasm to sandbox poten-
tially vulnerable third-party libraries [35, 72], but cannot
sandbox many media-decoding today libraries due to the
user-visible delay it would introduce [28]. Scaling — current
state-of-the-art SFI techniques waste large amounts of vir-
tual address space, limiting the number of concurrent Wasm
instances per-process [74]. Edge computing platforms are
already hitting Wasm’s scaling limits [77] — forcing them to
rely on multi-process architectures that sacrifice throughput
and latency, and increase software complexity (§2). Such
scaling limitations only become more acute as application
complexity increases [100]. Segue and ColorGuard address
these limitations in the following way.

With Segue (§3.1), we note that SFI uses a base-and-bounds
model of memory protection [62], similar to segmented mem-
ory systems. By leveraging the vestiges of segmentation
support in the x86-64 ISA [50] (§3.1), we eliminate the cost
of adding the “base”, i.e., selecting the protection domain
to access — by substituting segment-relative-addressing in
place of the standard address computation used by SFI. This
small change significantly reduces SFI overhead, cutting the
number of instructions required for sandboxing memory
operations in half, and also reduces register pressure. As a
result, Wasm’s overhead vs. native execution is reduced by
44.7% on SPEC CPU 2006, as well as 75% and 68% for sand-
boxing font rendering and XML parsing in Firefox (§6.1).

With ColorGuard (§3.2), we note that production Wasm
implementations rely on large regions of mostly unused ad-
dress space to catch out-of-bound memory accesses. While
this avoids adding expensive bounds checks to every mem-
ory access, it also wastes most of the virtual address space.
We can pack additional Wasm instances into this wasted
space, while still maintaining isolation, by using memory
tagging [2, 7, 8, 50] (e.g. Intel MPK), to assign each instance
its own unique tag (color). This increases the number of con-
current Wasm instances a process can support by up to 15X,
from the current limit of 16K instances to 256K instances. In
comparison to using multiple processes for scaling, we found
ColorGuard improves throughput by up to = 29% in bench-
marks that simulate FaaS edge platform workloads (§6.4).

We have upstreamed our optimizations into three indus-
try supported Wasm toolchains: Wasm2c (Google), WAMR
(Intel), Wasmtime (Fastly).

To the best of our knowledge, Segue is the first applica-
tion of x86-64 segmentation in a production SFI tool, and
ColorGuard is among the first production applications of
MPK. Notably, unlike prior systems where scaling is limited
by MPK [10, 45, 59, 82, 98, 99], ColorGuard illustrates how
MPK can improve scaling.

Shravan Narayan et al.

While deploying these changes, we encountered a vari-
ety of challenges. For example, even after our ColorGuard
code was upstreamed (code reviewed, fuzzed, etc.), we still
weren’t confident in its correctness. Specifically, ColorGuard
modifies the address space layout in Wasmtime, which repre-
sents an explicit contract between the runtime and compiler.
If this is incorrect, it can break isolation. Such bugs are the
most common source of CVE’s in Wasmtime [22, 23, 30,
44, 81]. Consequently, we formally verified our implementa-
tion (§5.2), revealing a bug, and several missing safety checks,
for which fixes are being upstreamed.

We discuss how SFI is implemented in Wasm, and its
performance and scaling limitations in §2. We explore how
Segue and ColorGuard address these limitations (§3), and the
challenges we encountered deploying these optimizations in
real toolchains (§4 and §5). We then evaluate the performance
improvements Segue and ColorGuard offer in three Wasm
toolchains, and in an x86-64 SFI implementation based on
LFI [109] (§6). Next, we then explore how ColorGuard can be
implemented with memory tagging technologies (MTE [7],
POE [40]) on ARMv?9 (§7). Finally, we survey other work on
SFI performance and scaling (§8).

2 Background and Motivation

Software-based Fault Isolation (SFI) [101] works by interpos-
ing on all memory accesses using compiler instrumentation.
Using this mechanism, it virtualizes a process’ address space
into multiple isolated sandboxes. Because SFI eschews tra-
ditional hardware protection, it can offer unique properties
that existing hardware-based isolation cannot.

These unique properties are core to what makes Wasm [43] —
a platform-independent byte code that uses SFI for memory
virtualization — compelling. For example, Wasm can rapidly
switch between sandboxes at user-level — supporting IPC
and context-switches that are as fast as function calls [60]; it
can also create new sandboxes in microseconds (e.g. 5 s in
Wasmtime [31]) — orders of magnitude faster than creating
processes or VMs [33, 45, 67, 75, 90]. These unique capabili-
ties enable many novel use cases [1, 25, 26, 29, 35, 57, 72, 78,
79, 91, 95, 96] that would not be possible without SFI.

Unfortunately, SFI is often also Wasm’s Achilles’ heel.
Memory access is on the critical path of many applications,
and the added overheads of SFI instrumentation (often 20%—
30% or more [55, 93, 111]), at best limit performance, and at
worst render Wasm unusable. As mentioned, Wasm’s over-
head limits which libraries Firefox can sandbox [28], and
there are doubtless many other applications where Wasm’s
many benefits are not outweighed by the performance tax
it imposes vs native execution. To explore this, we start by
reviewing how SFI is implemented in Wasm.

How SFI works in Wasm. SFI divides process address space
into separate memory regions. Separation is enforced by an
SFI compiler that modifies memory operations (load/store)

Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern Architectures ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

1 typedef struct {

1 ; SFI performs mem ops as 1 ; SFI performs mem ops as
2 u64 dummy; // offset: 0x@ 2 heap_base + 32-bit offset 2 heap_base + 32-bit offset
3 u32 arr[5]; // offset: 0x8 3 ; heap_base=>rax, val=>rbx 3 ; heap_base=>gs, val=>rbx
4 } foo; 4 ; obj=>rcx, idx=>rdx 4 ; obj=>rcx, idx=>rdx
s Pattern 1: Int to ptr, then deref 5 Pattern 1 5 Pattern 1
6 // 64-bit int to be converted 6 ; val = (u32)val; 6
7 ub4 val = ...; 7 mov ebx, ebx 7 ; Load (heap_base + (u32)val)
8 // convert to pointer and deref 8 ; Load (heap_base + val) 8 in a single instruction
9 ub4 a = *(ub4*)val; 9 mov r1@, [rax + rbx] 9 mov r10, gs:[ebx]
10 10 10
11 foo* obj = ...; // struct with arr 11 ; tmp = (u32)&(obj->arr[idx]) 11 ; Load (heap_base +
12 u32 idx = ...; // index to read 12 lea edi, [ecx + edx*4 + 0Ox8] 12 (u32)&(obj->arr[idx]1))
13 13 ; Load (heap_base + tmp) 13 in a single instruction
14 u32 b = obj->arr[idx]; 14 mov r11, [rax + rdi] 14 mov r11, gs:[ecx + edx*4 + 0x8]

(a) Example code snippet

(b) SFI compilation

(c) SFI compilation with Segue

Figure 1. Segue in Practice: This illustrates how two code patterns compile more efficiently with Segue: an integer-to-pointer
conversion followed by a dereference, and reading an array element inside a struct. All pointer accesses are converted to the form
“linear memory base (i.e., heap base) + a 32-bit offset” for sandboxing. Without Segue, each pattern takes two instructions, and uses
rax to store the heap base. With Segue each pattern takes one instruction, frees up rax and an operand slot. Note that in x86, any
64-bit register (e.g., rbx) is truncated to 32-bits, if an instruction uses its 32-bit variant (e.g., ebx) as an operand.

to ensure accesses fall within the region dedicated to the
appropriate sandbox, and traps accesses outside that region.

Conceptually, an SFI compiler views the operand of each
memory operation as an offset into a region, and enforces iso-
lation in two steps: (a) it adds the starting address of current
region to the offset (b) it adds a bounds check to ensure the
operand is still in the appropriate region. In practice, bounds
checks are often too expensive [69, 111] . Thus, produc-
tion Wasm engines instead enforce bounds implicitly using
virtual memory, and fall back to bounds checks only when
needed (in embedded domains without virtual memory, or
32-bit address spaces where virtual address space is limited).

To do this, Wasm engines allocate 4GB for each memory
region (linear memory in Wasm terminology), followed by
4GB of unmapped memory (a guard region), for a total of 8GB
per-sandbox. Wasm defines load/store instructions as taking
two 32-bit unsigned operands. Thus, when a Wasm compiler
generates code it adds these operands, resulting in a 33-bit
address. It then takes this address and adds it to a 64-bit base
address (the starting address of a sandbox’s memory). The
result of this addition then is used to perform the load or store.
Consequently, addresses are always within 33 bits (8GB) of
the start of linear memory by construction, and all memory
accesses either hits linear memory (first 4GB), or the guard
region (second 4GB) which traps. Some Wasm compilers like
Wasmtime additionally implement optimizations to reduce
guard regions from 4GB to 2GB (See §5).

Scaling in Wasm. FaaS edge computing platforms [1, 27, 57,
78] spin up new Wasm instances in microseconds [31], on
Historically, bounds were also enforced with masking [101]. However, this

causes out-of-bounds loads/stores to wrap around. This results in memory
corruption, rather than a deterministic traps as Wasm requires.

every network request. Similar to other web services [85, 92],
these requests often wait on IO from caches, microservices,
etc. resulting in lots of outstanding concurrent requests.

Unfortunately, as each instance consumes 8GB (2%) of
address space, a server process can handle only a limited
number of concurrent requests before address space is ex-
hausted. Concretely, x86-64 CPUs provide a 48-bit address
space?, with only 47 bits available in user space [50] which
means we can run at most 16K (2%7/2%%) Wasm instances
per-address space. By the standards of modern web ser-
vices [20, 92], 16K concurrent requests is not much, and edge
providers have been hitting this limit for years [71, 77]. In-
terestingly, most of the 8GB allocated per-instances is never
used — Wasm instances in FaaS settings rarely exceed a few
hundred megabytes [27] leaving the 4GB linear memory
largely unused, while the 4GB guard region is also dead space.
As noted, Wasmtime’s optimizations to reduce the guard re-
gions to 2GB marginally increase this limit to roughly 21K,
but still leaves a lot of unused space.

To address this concurrency limit, FaaS vendors resort to
spinning up more processes to improve scaling and avoid
under-utilizing CPUs. However, this introduces several prob-
lems. First, going multi-process adds context-switch over-
heads and scheduling delays, increases cache contention, and
introduces load imbalances — all of which hurt performance.
Next, FaaS applications don’t always consist of a single func-
tion, and when functions communicate across processes, it is
1000 to 10000 slower [45, 60]. Finally, going multi-process
adds complexity, making it harder for platform developers
to build new features and diagnose performance issues [27].

2A small fraction of CPUs support 52/57-bit address spaces, however, using
this expanded address space presents additional challenges (§8).

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

Growing hardware capacity, greater serverless adoption, and
changes to Wasm that increase the number of memories
per-application [100] will only exacerbate these challenges.

3 Segue and ColorGuard

We present Segue and ColorGuard, two optimizations for
SFI performance and scalability, respectively.

3.1 Reducing SFI overhead with Segue

Segue leverages the vestiges of segmentation in the x86-
64 ISA to reduce SFI overhead for memory operations. By
way of context, segmentation is deeply embedded in the
x86-32 memory model [21], and was a key enabler for both
academic [34] and production [110] SFI systems in the past.
However, popular OSes made little use of segmentation,
leading AMD to remove most support when they introduced
x86-64. x86-64 retains just two segment registers — %f's and
%gs, with minimal functionality. In particular, segment limit
checks were eliminated. As segments could no longer en-
force limit/bounds checks on memory operations, they were
replaced by other mechanisms and were no longer perceived
to be useful for SFI [24, 86]. With Segue, we show that the
vestiges of segmentation in x86-64 are still quite useful.
Segue optimizes SFI memory access, by storing the base
address of the current memory region being accessed in a
segment register, then using segment-relative addressing for
memory operations. Figure 1a, illustrates this in two com-
mon patterns for accessing memory: an integer-to-pointer
conversion followed by a dereference, and an access of an
array in a struct. Figure 1b shows the (simplified) assembly
code that current Wasm/SFI tools generate for this code, and
Figure 1c shows the same code compiled using Segue.
Without Segue, each memory access requires computing
the heap-base (stored in register %rax) plus a 32-bit offset
to ensure isolation (the SFI address space is assumed to be
4GB). With Segue, the heap base is stored in the %gs regis-
ter, and is used directly in the mov, with segment relative
addressing. Additionally, without Segue, we see that each
code pattern compiles to two instructions; but, with Segue,
compiles to one instruction. These changes allow Segue to
improve performance because it:
Frees an operand slot in mov instructions — x86 supports
a variety of memory addressing modes that take several
operands, to support complex address calculations. Usually,
SFI/Wasm compilers must reserve one of these operand slots
for a linear memory base address, as shown in lines 9 and
14 in Figure 1b (the base address is stored in register %rax).
Thus, the compiler cannot use this operand slot for other
inline addition. However, since segment relative addressing
does this addition as part of the load, Segue frees this operand
slot for the compiler to use, as shown on line 14 in Figure 1c.

Shravan Narayan et al.

GuardPage- Colorguard Color
Based SFI
Sandbox 1 Sandbox 1 1
Sandbox 2 2
Sandbox 3
Sandbox 4
8GB :
Guard Region 1 r Sandbox 5 :
Sandbox 6
Sandbox 7
Sandbox 8 8
Sandbox 2 Sandbox 9 1
P Sandbox n n%8
— Guard Region

Figure 2. Scaling with ColorGuard: an example of packing
8% more sandboxes as traditional guard-region based SFI, into
a 8GB region using 1GB sandboxes. Each sandbox in the 8GB is
assigned its own unique MPK color (tag). Colors are allocated
(striped) across memory to ensure identically colored sandboxes
are always 8GB away from each other.

Reduces instructions by allowing mixed-mode arithmetic —
SFI/Wasm compilers calculate machine addresses using 64-
bit arithmetic even though indexes into linear memory are
32-bits. This is because adding a 64-bit base address to the
32-bit offset is not permitted in a single instruction in x86.
However, with Segue, such mixed-mode arithmetic is possi-
ble by using the address-size override prefix. As shown on
line 14 in Figure 1c, this allows SFI compilers to replace two
instructions with one.

Frees up a general-purpose register As discussed, Segue also
frees up a general-purpose register (GPR). We see that %rax
is used for the linear memory base address before Segue
(Figure 1b), and %gs being used after (Figure 1c). This frees
up %rax for other computations.

Other considerations. For practical deployment, a few de-
tails bear consideration. To start, OSes dedicate one segment
register to thread-local storage (TLS) (e.g., %f's on Linux);
thus, one segment register is free for other uses [58]. Next,
while all x86-64 CPUs support Segue, CPUs since IvyBridge
(2011) offer userspace instructions to modify segment regis-
ters (wrfsbase, etc.) in lieu of expensive system calls; this is
important for fast context switches. Finally, segments will
remain a stable part of x86-64 [49]; as removing/modifying
them would break all existing x86-64 binaries that use TLS.
While often a significant performance win, Segue also
has some costs. Using the segment prefix and the address-
size override prefix slightly increases the length of mem-
ory instructions. Also, there is a runtime cost to setting the
%gs register to the heap base of a new region when context
switching into a Wasm instance — although this is quickly
amortized. In §4, we touch on other practical considerations
when deploying Segue in production toolchains, and show
how the benefits of Segue far outweigh these costs in §6.

Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern Architectures ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

3.2 Improving Scalability with ColorGuard

ColorGuard increases Wasm scalability, i.e., the number of
instances that can run concurrently in each process address
space by up to 15X, based on two observations: (1) As dis-
cussed (§2), a Wasm instance’s 8GB allocation (4GB address
space + 4GB guard region), is mostly unused space. By def-
inition, the guard region is unmapped memory, and many
Wasm Faa$ workloads rarely exceed more than a few hun-
dred MB [27], (2) We can safely repurpose the unused space
for (smaller) linear memories, if other executing Wasm in-
stances cannot access this repurposed space.

To do this, we leverage Memory Protection Keys (MPK)® [2,
50], a feature that allows applications to control access to
memory via. keys — to enforce the constraint that memory
not used by the currently running sandbox is inaccessible.
The key (also called the color) is a 4-bit value that is stored in
page table entries (PTEs). Once an application has assigned
colors to pages via system calls (i.e., pkey_mprotect()),
it specifies which color the current thread can access in
userspace in the pkru register. As pkru updates are fast (=~ 40
cycles (§6)), a thread can rapidly change accessible colors.

Using this mechanism, ColorGuard stripes memory so that
sandboxes within an 8GB range have different colors, and
sets the pkru register so the current thread can access only
the color of the active sandbox. Other process memory, such
as memory being used by a Wasm runtime, is completely
unchanged and assigned the default MPK color (0).

Figure 2 contrasts the ColorGuard striping pattern with
traditional guard regions for sandboxes with 1GB linear mem-
ories and 7GB guard regions. Here, we see that ColorGuard
requires every sandbox that occupies memory in the 8GB
following a given sandbox to use a different color for its lin-
ear memory. Specifically, MPK colors stripe the 7GB region
following the end of sandbox 1 — offering an 8x increase in
sandbox density. In our example, any out-of-bounds memory
access from sandbox 1 would trap as it would hit a region
with a different color. We could further increase density to
15X, by using all of MPK’s colors and creating smaller sand-
boxes, i.e., for sandboxes of 8GB/15 ~ 550MB — though in
practice we find real allocators impose additional constraints
(§5.1), that allow still smaller ~ 400MB sandboxes (§6.4).

This striping pattern scales up to any number of sandbox
chains — sandboxes that are placed in adjacent memory re-
gions. We only need guard regions in a sandbox chain in
two instances: (1) after the final sandbox to ensure the last
sandbox in the chain is protected, and (2) if 15 consecutive
sandboxes use less than 8 GB combined, we’ll need a guard
region before using the first color again. A Wasm runtime
could also potentially chain sandboxes of different sizes to
efficiently use colors and possibly eliminate the second case.

3MPK appeared in Skylake (2017) and Comet Lake (2019) in Intel server and
client CPUs respectively, and in EPYC Milan (2021) in AMD CPUs. ARMv9
offers this functionality with its permission overlay extension (POE) [9, 40].

Finally, we note that prior sandboxing systems that rely on
MPK exclusively for isolation have faced security challenges
such as controlling access to potentially unsafe instructions
or system calls that could bypass MPK [19, 82, 99]. However,
such issues are not relevant to Wasm, as Wasm compilers,
by definition, control which instructions are emitted and
Wasm runtimes don’t allow direct access to system calls;
rather Wasm code can only call higher level interfaces such
as WASI [103], that don’t invoke these unsafe system calls.
Additionally, MPK prevents speculative access to pages with
non-permitted colors [50, 53] and thus offers similar guaran-
tees to guard regions.

In the next two sections, we discuss implementing and up-
streaming Segue and ColorGuard in SFI toolchains.

4 Implementing Segue

We discuss our experience developing and upstreaming Segue
in two production Wasm toolchains (Wasm2c, WAMR), and
in one research SFI system (LFI [109]), and explore the prac-
tical challenges we encountered.

4.1 Implementing Segue in Wasm2c

Wasm2c [94] is a transpiler that transforms Wasm to a limited
subset of C, offering the benefits of Wasm isolation in a form
that is easy to compile and link with existing tools. Wasm2c
is part of the Wasm binary toolkit (Wabt), a widely used set
of Wasm tools maintained by Google, and is used by Firefox
to mitigate memory safety vulnerabilities by sandboxing
third-party C libraries [46, 72].

We modified Wasm2c so that accesses to Wasm linear
memory are performed through a segment register. For this,
we used a GNU-extension called named address spaces [37]
that allows pointers in C to indicate that they belong to a
particular segment. We then augmented the Wasm2c runtime
to execute instructions that set the segment base on x86 using
compiler intrinsics. Finally, we compiled the emitted C code
and Wasm2c runtime with Clang to produce our binary.

Our initial implementation was pleasantly simple. It works
directly with the C compilation pipeline which allows C
compilers to fully take advantage of all of the benefits of
Segue (§3.1) — the extra register, the extra addressing operand,
and the inline truncation — with no extra effort, and thus
allowed us to evaluate the performance benefits of Segue
(§6.1). As we discuss in §4.2, such complete integration is far
more involved in other toolchains.

Bringing Wasm2c to production. Turning our prototype
into production ready code required two changes. First, to
make Segue work cross-platform required adapting it to a
variety of different OSes and C compilers. We also needed to
test for the presence of x86-64 segmentation and gracefully
fall back if not available.

Next, we needed to add support for switching the segment
register (linear memory base address) at the appropriate

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

time — Wasm2c supports multiple modules, and each may
have more than one memory —a Wasm feature called multi-
memories [5]. To enable this, we choose a simple design that
avoids the need for Wasm2c developers to worry about track-
ing and resetting this register, which is error prone and could
compromise isolation. Instead, we modified the Wasm2c run-
time to set the segment base on function entry when called
from outside of the current Wasm module, i.e., when enter-
ing the module; while functions called from within the same
module use an alternate code path that elides the setting
of this register. This approach thus minimizes redundant
register assignments, while maintaining simplicity.

Segue has been upstreamed into Wasm2c, which will be
used to enable Segue in Wasm-based library sandboxing used
by production Firefox [72]. Firefox adds another level com-
plexity as it is run both on new CPUs as well as older CPUs
that do not support the FSGSBASE extension (user level
access to %FS/%GS). Thus, we must gracefully fall back to set-
ting these registers using system calls (e.g. arch_prct1()),
and carefully account for the added overhead this entails.

As we describe next, integrating Segue into more complex
toolchains like WAMR is more involved.

4.2 Implementing Segue in WAMR

WAMR [48] is a standalone WebAssembly compiler and run-
time that supports ahead-of-time (AOT) and JIT compilation,
developed by Intel. Unlike WasmZ2c, it uses the LLVM com-
piler backend — converting Wasm to LLVM IR, and relying
on LLVM to convert this to native instructions. WAMR sup-
ports a wide range of platforms including embedded devices
and trusted execution environments (e.g., Intel SGX).

WAMR has shipped a (limited version of) Segue for over
a year [51]. Initially, supporting Segue in WAMR seemed
straightforward. We modified WAMR [6] to set the segment
register and to emit memory access instructions using seg-
ments. Unfortunately, implementing the full (and simple)
design from §3 revealed several challenges.

First, WAMR cannot easily make use of the extra operand
slot discussed in §3.1. This would require substantial modifi-
cations to WAMR’s code generation and optimization passes
that would only benefit Segue users. Thus, the WAMR team
opted to adopt a more limited form of Segue that only uses
segment-based memory access to free a register (and lever-
ages Segue’s fast heap base addition). In practice, this means
that WAMR does not always reduce the number of instruc-
tions emitted, like Wasm2c (Figure 1b). However, freeing up
of a register and Segue’s more efficient instruction encoding
still lead to real world performance improvements.

Indeed, in our initial tests of Segue with WAMR’s bench-
mark suite (discussed in Section 6.2), we saw performance
improvements in most cases. However, we also saw some
performance regressions in a few benchmarks: the sieve
benchmark (prime number computation) and memmove (mov-
ing data between two buffers) from the Sightglass suite [15].

Shravan Narayan et al.

These regressions are not fundamental to Segue: WAMR
includes a number of Wasm-specific vectorization passes
(e.g., such as converting long load sequences, loops, etc. to
SIMD instructions [52]) that make assumptions about the
generated code. Still, changing these optimization passes to
make them Segue-aware is not trivial; the straightforward
approach would make them less platform-neutral, hindering
WAMR’s ability to support the many instruction sets it does
today. We thus only expose Segue behind a flag that the user
can selectively enable; in practice, this also allows users to
selectively tune the optimization to their workload (e.g., by
enabling Segue selectively on loads-only or stores-only) and,
indeed, we were able to address the regressions in-turn.

4.3 Segue in LFI

To explore the implications of Segue in a state-of-the-art SFI
system that is not Wasm, we implemented Segue in LFI [109].
LFI was originally developed for ARM64, and works by
rewriting assembly code to insert SFI instrumentation. We
implemented an x86-64 backend for LFI (with and without
Segue) in 700 lines of code, using isolation techniques from
NaCl [86] for sandboxing loads, stores, and jumps.

While our implementation was mostly straightforward, a
key difference between Segue with Wasm vs. LFI is that we
still need to reserve a GPR for the region base address — but
not for isolating memory operations, rather for control-flow.

LFI (like Wasm) relies on an entirely different scheme
for control-flow isolation than Wasm. Unlike Wasm, LFI re-
stricts code to the 4GB sandbox region and thus both forward
(indirect jumps) and backward edge control-flow (return in-
structions) have to be bounded to this region. Unfortunately,
we cannot use the x86-64 segment registers (%f's/%gs) on
control-flow targets; rather we fall back to SFI’s default ap-
proach — using explicit instructions to add the region base
(stored in a GPR) to the return address restricted to 32 bits.
Finally, due to the large number of control-flow instructions
in a typical binary, spilling/reloading this GPR is not viable.

5 Implementing ColorGuard

We implemented and upstreamed ColorGuard in Wasmtime,
an open source Wasm runtime developed by multiple indus-
try contributors, used in Saa$, serverless, and edge comput-
ing settings by Fastly, Microsoft Azure, Shopify, and oth-
ers [31, 78]. Because it is designed to support demanding
server-side workloads, Wasmtime is far more sophisticated
than other Wasm runtimes. Also, Wasmtime is tightly in-
tegrated with a custom compiler backend, Cranelift. Thus,
unlike the other SFI toolchains we evaluated, the Wasm-
time/Cranelift developers own every step of compilation.
This added complexity, and the scope of Wasmtime’s produc-
tion use required additional rigor in testing and deploying
our changes, including formally verifying the correctness of
our implementation (§5.2).

Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern Architectures ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

Num | Wasmtime invariant

Goal

1 total_slot_bytes == pre_slot_guard_bytes +
slot_bytes * num_slots + post_slot_guard_bytes

2 slot_bytes >= max_memory_bytes

3 is_page_aligned(slot_bytes, max_memory_bytes,

pre_slot_guard_bytes, post_slot_guard_bytes,
total_slot_bytes)

4 num_stripes <= num_pkeys_available &&
num_stripes <= num_slots && num_stripes >= 1
5 num_stripes <=

(guard_bytes/max_memory_bytes) + 2

6 bytes_to_next_stripe_slot >=
expected_slot_bytes.max(max_memory_bytes)
+ guard_bytes

slot_bytes + post_slot_guard_bytes >=
expected_slot_bytes

Ensure there are no memory leaks by checking that piecemeal allocating
slots amount to the total allocation.

Each slot must be large enough for the Wasm memory to grow into.
Enforce alignment on page-related parameters especially since even
minor divergence could can break memory isolation.

Ensure that we use at most many stripes (and slots) as MPK supports.

Ensure minimum number of stripes (and thus protection keys). If the next
MPK-protected slot is bigger or the same as the required guard region,
we only need two stripes; otherwise if the next slot is smaller than the
guard region, we need enough stripes to add up to at least that guard
region size.

Ensure that using stripes to scale the number of sandboxes doesn’t intro-
duce vulnerabilities like out-of-bounds access. To this end, we (1) may
have reduced the slot size from expected_slot_bytes to slot_bytes
assuming MPK striping; and, (2) enforce that the last slot doesn’t rely on
MPXK for striping.

7 expected_slot_bytes mod WASM_PAGESIZE ==
8 max_memory_bytes mod WASM_PAGESIZE ==
9 expected_slot_bytes <= total_memory_bytes

guard_bytes mod OS_PAGESIZE == @
10 expected_slot_bytes <= total_memory_bytes

[Missing] Slots must be a multiple of Wasm’s page size (64KB).
[Missing] Max memory must be a multiple of Wasm’s page size (64KB).
[Missing] If pre-guardpages are used, it must be a multiple of OS page
size (4KB).

[Missing] Total slots size should fit into usable memory.

Table 1. ColorGuard safety invariants in Wasmtime.: Invariants 1-6 show initial checks upstreamed by the Wasmtime team.
Invariants 7-10 shows missing checks that our verification effort revealed that could permit invalid/unsafe configurations.

5.1 Implementing ColorGuard in Wasmtime

As discussed in §3.2, implementing ColorGuard consists of
three steps: (1) obtaining MPK colors at startup; (2) striping
(coloring) memory in Wasmtime’s allocator; (3) changing
colors during transitions into or out of a sandbox. Next, we
describe each step, then discuss other deployment challenges.

Obtaining protection keys. MPK allows a user level pro-
gram, i.e, Wasmtime, to enforce page permissions using up to
15 keys/colors. To use these, Wasmtime uses the system call
pkey_mprotect() to assign a color to pages and configures
the pkru register to specify which colors (and thus pages)
can be accessed by the current thread. As some platforms
may not support MPK, we modified Wasmtime to check for
its availability. We also added a user configurable parameter
to specify how many keys are available, in case Wasmtime
is used in an application that uses some keys for other pur-
poses. Wasmtime could also dynamically infer the free key
count via error codes from the pkey_alloc() syscall.

Striping Memory in Wasmtime’s Allocator. We extended
Wasmtime’s pooling allocator to support ColorGuard. The
allocator pre-allocates a large slab of memory (the pool) at
application startup using mmap () —and then splits it into
slots, delineated by guard regions, that will be used as linear
memories. When a Wasm instance finishes execution, the
allocator zeroes the memory in the slot with the madvise()
syscall, so that it can reuse this slot for a new Wasm instance.

Unlike our earlier description of address spaces and guard
regions, the allocator does not exclusively support a 4GB
address space + 4GB guard region memory layout; instead,
its layout is configurable. Both the address space size, guard
region size, and their layout can change to support different
bounds checking mechanisms (guard regions vs. bounds
checks, or even a mix of the two), and memory organizations.

We mention this for two reasons. First, the details of mem-
ory layout are used to construct an explicit contract between
the allocator and compiler. If this contract is not maintained,
it will break isolation. Thus, when modifying the allocator to
support ColorGuard, these details are important for correct-
ness; we discuss this further in the next section on formally
verifying our changes. Second, this added sophistication ex-
ists largely due to Wasmtime’s requirements for scalability.

For example, the allocator, by default, does not employ
the standard Wasm configuration of a 4GB address space
followed by 4GB guard regions. Instead, it pads each Wasm
instance with 2GB of pre-guard region and 2GB of post-guard
region before and after the sandbox memory respectively.
This modified scheme allows two Wasm instances in ad-
jacent slots, A and B, to share 2GB of guard region — the
post-guard region of the Wasm instance A can serve as the
pre-guard region of Wasm instance B. Thus, instead of 8GB
per-instance, only 6GB per instance is required, allowing
roughly 20K instances per process, vs. the usual 16K.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

This alternate memory layout is supported by modifica-
tions to how Cranelift generates code to access linear mem-
ory (§3.1). To wit — for sandboxes with a maximum memory
limit less than 2GB, Cranelift implements linear memory
base addition using a signed (rather than the normal un-
signed) offset; thus any offset beyond 2GB would trap in the
pre-guard region, as it is interpreted as a negative index.

To further complicate things, Wasmtime also supports
guard regions of arbitrarily small sizes; in this scenario the
compiler (Cranelift) employs explicit bounds checks except
when it can statically prove that these limited guard regions
are sufficient for safety.

The memory pool has to calculate its slot layout account-
ing for all of this. To facilitate this, it accepts as parameters:
the number of slots, the maximum memory size, the size of
the guard regions, and whether pre-guard regions should be
included. Using this, it computes the memory layout, and
returns a layout data structure describing how the pool slab
will be divided up — it supplies this as a contract to the com-
piler (Cranelift), so it can generate code appropriately.

To support ColorGuard, we extended this layout computa-
tion to support striped memory. One part of this is determin-
ing how many colors we will need to stripe memory, i.e., to
create a repeating cycle of unique colors. In the simple case,
this is just the size of our guard regions (e.g. pre-guard +
post-guard), divided by our slot size (this tells us how many
linear memories can fit into the space used by our guard
regions), plus one additional color for the slot those regions
protect. For example, if we have 4GB of guard regions, and
our slots are 2GB each, we need (4/2) + 1 = 3 colors.

However, the calculation must also handle the scenario
where there are not enough keys available to create the
stripes; here, we need to modify the calculations to use a
combination of stripes and guard regions to maintain the con-
tract with the JIT compiler. After this layout is calculated, in
addition to providing it to the compiler, the allocator protects
each stripe with pkey_mprotect(); as well as the appropri-
ate guard regions with mprotect(...,PROT_NONE).

Changing protection keys on context switch. Finally, we
instrumented Wasmtime to set the accessible MPK stripe on
each transition into and out of a Wasm instance. Aside from
the fact that Wasmtime specializes transitions for a variety
of contexts — sync vs. async transitions, function calls vs.
jumps, etc. — this is mostly straightforward. We enable only
the key for the current stripe during the transition in; and we
disable this restriction when the Wasm instance calls back
into the host runtime, for example, to invoke a system call
via WASI [103] (Wasm’s interface for system operations).

Other deployment considerations. Deploying MPK in
Wasmtime involved dealing with several practical concerns.
First, GitHub’s infrastructure does not currently guarantee

Shravan Narayan et al.

MPK support, which is a challenge for fuzzing and integra-
tion testing. While QEMU can be used to address this, it is yet-
another-thing that needs to be understood and maintained by
Wasmtime developers. Next, as each MPK-protected stripe
creates a new virtual memory allocation (VMA) in the Linux
kernel, the default kernel limit of 65K (vm.max_map_count)
must be increased to fully utilize ColorGuard. Finally, MPK
is rather esoteric for most Wasmtime users, thus, both docu-
mentation and detailed working examples were upstreamed
to make this feature accessible.

5.2 Verifying ColorGuard

ColorGuard’s implementation modifies one of the most security-

critical parts of Wasmtime: the memory allocator. Bugs here
are the most common source of CVEs in Wasmtime [22, 23,
30, 44, 81, 104] — because these bugs often break isolation.

To avoid such bugs, the Wasmtime team specified a set
of invariants this new code should enforce when integrated
with the existing memory pool allocator. Table 1 (Invariants
1-6) shows the invariants specified by the Wasmtime team,
who implemented these as property tests that they then (tried
to) check using their fuzzing infrastructure. While fuzzing
did not reveal anything, the team was still concerned about
bugs, which lead us to reach for formal verification.

Specifically, we translated the invariants to logical for-
mulas that we then checked using the Flux [64] refinement
type checker. Unlike the Wasmtime team, we did not make
assumptions about the allocator’s interface: We verified the
memory allocator’s correctness by specifying its types under
a stronger attacker model — that the allocator is called with a
potentially unaligned, unsafe, or otherwise incorrect inputs
(and state). This ensures the allocator is defensive and can
be updated without introducing new security bugs *.

In total, we verified 133 lines of Rust using 34 lines of Flux
annotations, and a 15 line Z3 proof for bitwise arithmetic
that could not be checked in Flux. Our proof shows that
address space isolation holds regardless of parameters passed
to the ColorGuard-sandbox allocator API, assuming that
the program respects Rust semantics. The proof required
roughly two weeks for an experienced Flux and Z3 user and
is checked in under a second.

Our verification effort confirmed the Wasmtime teams
worries: we found one bug in the implementation and four
new preconditions (Table 1, Invariants 7-10) that the allocator
must satisfy for it to behave correctly (to specification).

The bug consisted of a saturating addition that should
have been a checked addition: if the addition ever actually
saturated, it would break the invariants in Table 1.

Of the missing preconditions, three are constraints on the
alignment of inputs, one is a requirement that the result
size is smaller than the total size of the allocation. While

“The allocator code does not change very often, so we do not plan to
upstream the proof to avoid new dependencies on Wasmtime.

Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern Architectures ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

I Wasm2c

B Wasm2c with Segue

150%

100%

50%

Norm. runtime

Figure 3. Segue on Wasm: SPEC CPU 2006 on Wasm2c
normalized to native code performance. Segue reduces the ge-
omean by 8.3%, eliminating 44.7% of Wasm’s overheads.

Wasmtime doesn’t call the allocator with such unsafe values
today, code that leaves defensive checks implicit typically
end up being the source of security bugs — and indeed bugs
in the allocator could be abused to break isolation.

The fix itself is straightforward, consisting of a few extra
checks in the allocator; we are currently working to upstream
these to ensure the runtime is formally guaranteed to enforce
these invariants going forward.

6 Evaluation

We evaluated Segue and ColorGuard in the upstream WAMR
(v1.3.2) and Wasmtime (main branch, Feb 8th 2024) respec-
tively, and our fork of Wasm2c. Benchmarks are run on
a desktop class Intel RaptorLake 19-13900KS (5.4 GHz, max
6GHz), on a performance core, with 128 GB of RAM, running
Ubuntu 22.04.3 LTS, with hyper-threading disabled. Bench-
marks are pinned to a single isolated CPU whose frequency is
fixed at 2.2GHz. Unless otherwise noted, all reported bench-
marks have a standard deviation of less than 1%.

6.1 Segue on Wasm2c

We evaluated Segue’s impact on performance and binary

size in Wasm2c with:

» SPEC CPU 2006: We choose SPEC CPU 2006 over SPEC
CPU 2017 as its memory requirements often exceed Wasm
4GB limit. We also excluded several benchmarks that were
not Wasm compatible (following Narayan et. al [73]).

» Firefox’s font rendering: uses a font rendering library,
libgraphite [41], that is sandboxed using Wasm to en-
sure that any memory-safety errors are contained. To mea-
sure performance, we recorded the time taken to reflow
text on a webpage ten times with different font sizes and
report the median. As Firefox uses separate invocations to
render each letter/glyph on the webpage, this benchmark
also captures the cost of setting the segment base prior to
each invocation of a Wasm-sandboxed library.

» Firefox’s XML parsing: also usesalibrary, libexpat [65],
that is sandboxed using Wasm. To measure XML parsing

Wasm2c Wasm2c with Segue Size reduction
bzip2 484 KB 448 KB 7.4%
mcf 396 KB 384 KB 3.0%
milc 780 KB 692 KB 11.3%
namd 1036 KB 948 KB 8.5%
gobmk 4692 KB 4444 KB 5.3%
sjeng 652 KB 616 KB 5.5%
libquantum | 468 KB 448 KB 4.3%
h264ref 1600 KB 1404 KB 12.3%
Ibm 396 KB 388 KB 2%
astar 568 KB 532 KB 6.3%

Table 2. Compiled binary sizes of the SPEC benchmarks
comparing stock Wasm and Wasm with Segue in the Wasm2c
compiler. Segue decreases binary size by a median of 5.9%.

performance, we repeat the benchmark used to evalu-
ate the performance of libexpat when it was first sand-
boxed [14]. We use Firefox’s built-in profiler to measure
the load time of an SVG image (which is defined using
XML) from a large website, Google Docs. The SVG con-
tains the toolbar icons used by Google docs, and is concate-
nated 10 times to amplify the benchmark and reduce noise.
We measure this cost 10 times and report the median.

Analysis. Segue offers marked speedups over the default
compilation. Segue eliminates 44.7% of Wasm’s geomean
overheads in SPEC CPU 2006. Although not shown, it can
also be applied to optimizing Wasm engines that use explicit
bounds checks; here it eliminates 25.2% of the overheads.
This matters because Wasm engines today rely on explicit
bounds checks to support 64-bit Wasm memories [3, 24], that
cannot leverage guard regions.

Segue also offers median reduction in binary size of 5.9%
and a max reduction of 12.3% for SPEC CPU 2006, this follows
from the fact that Segue reduces the number of instructions
for memory access by half (§3.1).

For Firefox’s font rendering, unsandboxed font rendering
takes 264 ms. Sandboxed font rendering takes 356 ms without
Segue, and 287 ms with Segue. Thus, Segue eliminates 75%
of the overheads of sandboxed font rendering.

For Firefox’s XML parsing, unsandboxed XML parsing
takes 331 ms. Sandboxed XML parsing takes 381 ms without
Segue, and 347 ms with Segue. Thus, Segue eliminates 68%
of the overheads of sandboxed XML parsing.

Outliers. We observe a couple of outliers. First, we see
429_mcf runs faster in Wasm than native; this is not en-
tirely surprising — since Wasm pointers are 32-bit offsets
rather than native 64-bit pointers, Wasm can act as cache
optimization [89, 111] in certain programs.

Next, we see that 473_astar is slightly slower with Segue.
We believe this is due to the increased size of memory in-
structions when using the %gs prefix. While Segue generates
smaller code overall, this may not hold true for the few in-
structions in the tight inner loop of some benchmarks. If this

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

N Wamr
150% B Wamr with Segue
3 Wamr with Segue on Loads

100%

50%

0%

Figure 4. Sightglass performance on WAMR normalized to
native code performance when Segue is used for (1) loads and
stores, (2) loads only. Most differences are in the noise due to
the small size of benchmarks. Segue shows some slowdowns
due to engineering gaps in vectorization optimizations (§4.2),
however, this is not fundamental. Segue for loads does not
exhibit slowdowns.

expanded instruction size (and resulting instruction cache
degradation) is not balanced by Segue’s other performance
benefits, the result is some performance overhead. To avoid
these overheads, one could modify the compiler to choose
between the Segue approach and an explicit base addition
using a cost function. We leave this to future work.

6.2 Segue on WAMR

To evaluate WAMR’s (limited) version of Segue, we used the
benchmarks used by WAMR developers: PolybenchC [66],
Dhrystone [106], and Sightglass [15]. We run these using the
existing benchmarking scripts in the WAMR repo to ensure
our evaluation is consistent with upstream practices.

PolybenchC contains applications from domains such as
linear algebra, image processing, physics simulation, etc.
Dhrystone is primarily tailored to estimating CPU perfor-
mance, and is also used to test compiler optimizations. Sight-
glass was developed by the Bytecode Alliance (which devel-
ops tools for Wasm) and consists of common cryptographic
and mathematical benchmarks, micro-benchmarks that test
primitives like memmove, switch statements etc. Sightglass
in particular includes benchmarks referenced in §4.2 that
sometimes showed slowdowns.

Analysis. We compiled our benchmarks with Clang-17.0.6
for native code and WAMR for Wasm. Similar to §6.1, a few
benchmarks in PolybenchC are faster in Wasm than in native
resulting in a Geomean speedup of 6% for Wasm over native.

Segue further improves WAMR’s performance resulting
in a Geomean 10% faster than native. Dhrystone similarly
runs faster in Wasm than native, improving performance by
9.7% over native. Segue improves this to further to 28.2% over
native. For Sightglass (Figure 4), the performance changes in
most of these benchmarks are in the noise due to their small
size; however, the performance of two benchmarks memmove
and sieve get slower by 35.6% and 48.7% respectively with
Segue; we discuss this next.

Shravan Narayan et al.

I LFI
150%

B LFI with Segue

100%

Norm. runtime

5

o
X

0%

Figure 5. Segue on LFI: SPEC CPU 2017 on LFI normalized
to native code performance. Segue reduces the geomean by 8%,
eliminating 46% of LFI’s overheads.

Outliers. As discussed in Section 4.2, Segue can sometimes
interact poorly with WAMR’s custom optimization passes. In
this case, Segue results in the optimization pass not recogniz-
ing memory operations that could be vectorized, thus result-
ing in slower performance. WAMR’s optimization pass can,
in principle, be modified to recognize Segue to restore per-
formance, although there may be practical engineering chal-
lenges to this (§4.2). We also found that employing WAMR’s
ability to tune Segue to apply only to loads eliminates these
slowdowns; while not a perfect solution, this gives devel-
opers a way to use Segue selectively depending on their
workload. Finally, we note that slowdown in benchmarks
like memmove are unlikely to have a large impact on typical
Wasm programs, as most programs use the memory manip-
ulation functions in the C standard library — functions that
directly use Wasm’s vectorized bulk memory operations [4]

6.3 Segue on LFI

We evaluate the benefit of Segue for LFI on the SPEC CPU
2017 benchmark suite [13], using the same 14-benchmark
subset as prior LFI work [109]: all SPECrate benchmarks
that use only C/C++ and are compatible with musl-libc. We
use GCC 13.2.0 with LTO enabled. The results are shown in
Figure 5. Without Segue, the baseline SFI approach incurs a
geomean overhead of 17.4% compared to native code. With
Segue, this overhead is reduced to 9.4%, eliminating 46%
of LFI’s overhead. Interestingly, Segue offers remarkably
consistent performance improvements across our Wasm2c
and LFI benchmarks, even though the two rely on different
SFI schemes, compilers, and different versions of SPEC.

6.4 ColorGuard on Wasmtime

We used a microbenchmarks and synthetic FaaS workloads
to measure ColorGuard’s overheads and scaling benefits.

6.4.1 Transition microbenchmark. When transitioning
(context switching) in and out of Wasm instances (on in-
voking the WASI [103] API, switching between Wasm in-
stances, etc.), transition code does a variety of tasks that

Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern Architectures ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

= 25% —8— Hash load-balance
& 2™ —e— Regex filtering
% 20% A HTML templating }“47\1/
£ 15%
o
< 10% 1
g
S 5%
[/
0% A

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of processes

Figure 6. Multiprocess Scaling vs. ColorGuard: Results
from simulated FaaS workload on a single core. As the number
of processes required to scale increases, ColorGuard offers more
speedup, with a maximum of = 29%.

can include switch stacks, set exception handlers, adjust-
ing for Wasm’s ABI, etc. With ColorGuard, an additional
instruction is added to switch MPK domains. We measured
the impact of this added cost on different transitions [17]
with 10 repetitions and report results below. On average,
Wasmtime’s per-transition cost increases from 30.34 ns to
51.52 ns, a roughly 20ns (44 cycle) increase. As transitions
in Wasmtime are relatively infrequent, and are often used
for expensive actions such as system calls, this added cost is
generally amortized, as we see on our macrobenchmark.

6.4.2 Scaling microbenchmark. To begin, we exercised
Wasmtime’s scaling with a simple example program that
instantiates Wasmtime’s pool allocator (§5) with 408 MB slots
(linear memories). Without ColorGuard, we were able to to
create 14,582 memory slots, and with and with ColorGuard,
we could allocate 218,716, an increase of ~ 15X.

6.4.3 ColorGuard Scaling vs. Multi-Process. To evalu-
ate the benefits of ColorGuard vs. using multiple processes
for scaling, we assembled a set of benchmarks typical of FaaS
edge environments [18, 32] — HTML templating, hash-based
load balancing, and regular expression filtering of URLs.

To reduce noise, and only measure the compute and sched-
uling overheads, we built a simulated FaaS on Tokio [97],
the async runtime used in common high performance Rust
web services that leverage Wasmtime. We used Wasmtime’s
epoch_interruption preemption mechanism to preempt work-
loads at a frequency (epoch) of 1 millisecond, similar to other
research [36] and production [27] systems.

Our simulation framework spins up N Wasm instances at
each epoch (to simulate handling N incoming http requests),
where N is configurable. The instance runs an associated
workload involving IO and returns the result from the work-
load. To simulate the cost of IO, we introduce a delay at the
beginning of workloads that we describe below. During this
delay, Tokio is free to schedule other Wasm instances, how-
ever Wasmtime will not relinquish the memory of any Wasm
instance until its workload is complete. The value of the de-
lay is drawn from a Poisson distribution at 5ms; to model
typical network request patterns seen in servers [88, 92].

Using this framework, we sought to measure how effi-
ciently ColorGuard and multiprocess scaling strategies han-
dled the same load on one core (all processes were pinned
to one core). For our multiprocess strategy, we increase the
number of running processes so we can handle the same
number of incoming requests as ColorGuard, i.e., we run 15
processes. We then measure the overhead of handling the
same number of concurrent requests with each strategy.

Analysis. Figure 6 shows the percent difference in through-
put of ColorGuard relative to multiprocess scaling for our
three workloads. We see that as the number of processes
required to scale increases, ColorGuard provides proportion-
ally greater throughput, offering up to ~ 29% more through-
put vs. multiple processes with a standard deviation of under
3%. As all our workloads are I/O bound, they were able to
scale up to 256K concurrent instances. As our simulation
keeps I/0 latencies uniform, our scaling results are relatively
similar across workloads.

To explain the difference in throughput, we looked at two
performance metrics: number of context switches and num-
ber of dTLB misses. Figure 7a shows the number of context
switches when using ColorGuard vs. process scaling. For Col-
orGuard, the rate of context switching stays consistent, while
the rate of context switches for process scaling increases as
we increase the number of processes. This makes sense: as we
use more processes they compete for CPU time which causes
more context switches and reduces throughput. Figure 7b
show the number of dTLB misses when using ColorGuard vs.
process scaling. Similar to the case with context switching,
as we add more processes, resource contention increases,
leading to more dTLB misses and lower throughput.

7 ColorGuard on ARM

At present, MPK on Intel and AMD is the only widely avail-
able hardware support for page coloring, while ARMv9 plans
to offer similar support through its permission overlay ex-
tension (POE) [9]. We were unable to evaluate ColorGuard
using POE, however, as current hardware and emulators do
not support POE yet. We do expect that ColorGuard will
work with POE with minor changes, as it is exposed through
the same Linux system call interface as MPK [40, 68].
ARMV9 also offers a granular coloring of 16-byte memory
chunks via its memory tagging extensions (MTE) [7] (mem-
ory tagging support is being considered for RISC-V [87]).
To explore the viability of ColorGuard-MTE, we prototyped
it on a Google Pixel Pro 8 phone, one of the few devices
that currently supports MTE. Notably, we found that the
available system call support for MTE imposes significant
performance penalties — penalties that can be easily avoided.

MTE and ColorGuard. MTE allows applications to tag
(color) 16-byte “granules” of memory. These tags are stored
in dedicated memory, and can only be updated through MTE-
specific instructions. Once memory is tagged, every pointer

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

700 K A Regex filtering (Multiprocess)

—>— Hash load-balance (Multiprocess)
HTML templating (Multiprocess)

—@— Regex filtering (Colorguard)

—@— Hash load-balance (Colorguard)

HTML templating (Colorguard)

600 K -

500 K -

400 K 4

300 K A

200 K A

100K 1

context switches in Thousands

T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
of Processes

(a) Context Switches: Multiprocess Scaling vs. ColorGuard:
As the number of processes required to scale increases, ColorGuard
context switches at a constant rate, while the rate of context switching
for process scaling increases with each additional process.

accessing tagged memory must have its’ top bits — bits 63
to 60 — set to the same tag as the memory being accessed; if
these tags don’t match, the processor will trap.

At ahigh level, ColorGuard-MTE is similar to ColorGuard-
MPK: each linear memory is tagged with one color to create a
striping pattern (Figure 2); the top bits of a pointer accessing
a linear memory are set by the Wasm compiler to ensure
the correct tag. By definition, Wasm compilers don’t allow
programs to use instructions that could modify tags, which
guarantees safety of ColorGuard-MTE. In our prototype, we
observed two significant sources of performance penalties,
and also identified straightforward fixes.

Observation 1: System calls are required for efficient
bulk memory tagging. Our Wasm allocator must stripe all
linear memories with the appropriate colors during initializa-
tion. Unfortunately, doing this with user-level instructions is
very slow as MTE allows us to change at most two granules
(32 bytes) at a time [7]. MTE’s bulk tagging instructions are
restricted to kernel code. We tested an example initializing
forty 64K linear memories. Without MTE this takes 79 ys per
instance, with MTE this takes 2,182 us. OS support for ac-
cessing bulk tagging instructions could potentially mitigate
this, and would be a next option to evaluate.

Observation 2: System calls to recycle memory discard
tags. Wasm engines such as Wasmtime deallocate a Wasm in-
stance’s memory using the madvise (MADV_DONTNEED) syscall
after it finishes executing. This zeros the memory, but does
not remove the mapping, allowing Wasmtime to reuse this
mapping for a new instance. Notably with MPK, these per-
page colors remain unchanged, meaning the allocator doesn’t
need to re-stripe memory. In contrast, with MTE, this syscall
automatically discards any MTE tags. This is doubly painful:
first, the allocator must retag memory for each instance (a
slow process per Observation 1); next, this also slows de-
allocation as tags are cleared — deallocating the forty Wasm

Shravan Narayan et al.

60 Mill Regex filtering (Multiprocess)
—>— Hash load-balance (Multiprocess)

@ 50 Mill HTML templating (Multiprocess)
2 —@— Regex filtering (Colorguard)
§ 40 Mill 4 —@— Hash load-balance (Colorguard)
£ HTML templating (Colorguard)
1%
@ 30 Mill
€
2 20 Mill §
o
* .

10 Mill 4

0 Mill "~

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
of Processes

(b) dTLB misses: Multiprocess Scaling vs. ColorGuard: As the

number of processes increases, resource contention (and therefore dTLB
misses) increases faster for process scaling than ColorGuard.

instances that we setup earlier goes from 29 s per instance
without MTE, to 377 s per instance with MTE. Other efforts
using MTE for memory safety have also noted that avoiding
tag discarding is important for performance [39]. Adding a
flag to madvise that leaves tags invariant, similar to MPK,
would alleviate this cost.

8 Related Work

Wahbe’s original system [101], and subsequent work [34,
43, 70, 86, 93, 111] report performance overheads from 20%
and 30% or more for SFI. Consequently, reducing these over-
heads through static analysis [84, 112], different guard page
schemes [86, 101, 110] and more efficient control flow in-
tegrity [70] have been explored. To the best of our knowl-
edge, Segue offers the largest reduction of SFI overheads on
x86-64 in the last two decades.

Segmentation and SFI. x86-64 segmentation can be used to
efficiently address separate memory regions. While thread-
local-storage (TLS) [50, 58] is the most prominent example,
security frameworks [54, 56] have also used this to efficiently
address runtime metadata stored by these frameworks in
a shadow memory. With Segue, we observe that segment-
based addressing is particularly beneficial for SFI, as every
heap access can be optimized.

As noted (§3.1), x86-32’s segmentation support was used
in multiple production [110] and research [34, 60] SFI sys-
tems. With Segue, we see that even the small vestiges of
segmentation in x86-64 can still benefit SFI systems such as
Wasm [43], NaCl [86], LFI [109], etc.

MPK-based isolation. Various research systems have ex-
plored using MPK for general in-process isolation [10, 45, 59,
82, 98, 99]. While performant, these systems have trouble
scaling because MPK only supports 16 keys (i.e., 16 concur-
rent sandboxes). Scaling beyond this requires falling back

Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern Architectures ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

to prohibitively expensive approaches such as page permis-
sions [76] or virtualization [42]. Separately, MPK has also
been used by security frameworks that rely on creating just
a single isolated domain [54]. In contrast, ColorGuard is the
first system to illustrate how MPK can improve scaling, by
combining MPK with classic SFI techniques.

Multiple works [19, 82, 99] have explored the security
challenges MPK-based isolation systems face in restricting
unsafe instructions and system calls. However, these are not
an issue for Wasm sandboxes, as explained in §3.2.

Reducing register pressure in SFI compilers. Wahbe et
al’s SFI [101] on MIPS and Alpha machines reserved four
and five general-purpose registers (GPRs) respectively (out
of the available 32), which alone resulted in overheads of
up to 7%. Subsequent SFI schemes [70, 86, 93], reduced this
to one reserved GPR on x86-64. However, since x86-64 only
has 16 GPRes, this still induces register pressure [74]. Segue
takes the final step on x86 by eliminating reserved GPRs.
While Intel’s APX [107] proposes expanding the total GPRs
on future CPUs [107], Segue benefits SFI on existing CPUs.
That said, a majority of Segue’s benefits come from reducing
instruction count, thus even with APX, Segue will still be an
important optimization.

Reducing guard regions in SFI. Wahbe et al. [101] used
guard regions to protect the stack, and observed that heap
guard regions could be used as a memory-performance trade-
off —increase the number of guard regions to elide more
runtime SFI checks and achieve better performance. NaCl’s
x86-64 implementation [86] adopted this approach and used
40GB guard regions to optimize performance; but this limited
scaling to a maximum of 2,979 sandboxes before exhausting
the address space. Wasm [43], in contrast, adopted a 4GB
guard region, allowing a maximum of 16,384 sandboxes. As
noted in §5, the Wasmtime [16] compiler optimized this fur-
ther; it reduced guard regions by a factor of 2 by combining
2GB guard regions, with either signed address calculation
or select bounds checks. ColorGuard takes this still further,
reducing this guard page usage by a factor of 15 by leverag-
ing MPK. This approach can be employed in any SFI scheme
that relies on guard regions, such as Wasm [43] or NaCl [86].

Other approaches to in-process isolation. In-process
isolation systems based on various hardware features in-
cluding Intel Memory Protection Extensions (MPX) [61],
CET [108], SMAP [102] x86 protection rings [63], virtualiza-
tion [11, 38, 45], and ARM’s memory domains [113] have
been explored. However, such approaches come with con-
straints that have limited their impact on SFI. MPX’s over-
heads are comparable to software implementations [61]; CET
and SMAP is restricted to 1 isolated domain [108]; SMAP,
ring, virtualization, and Memory Domains incur expensive
context switches due to ring/privilege switches [9, 50] and
require in-kernel support. In contrast, Segue and ColorGuard

offer practical benefits to existing SFI systems and are de-
ployed today. A detailed history of in-process isolation is
covered by Tan [93].

Larger virtual address spaces. Newer chips may support
address spaces larger than 48-bits which can be used to im-
prove the scalability of SFI. However, the use of larger address
spaces come with extra challenges that nevertheless make
ColorGuard a preferable solution in many settings.

For instance, some high-end x86-64 server-class proces-
sors can be configured to use 57-bit address spaces. However,
this requires moving from 4-level to 5-level page tables [47],
increasing the cost of a TLB miss by 25%; TLB misses are
already significant source of overhead in high-performance
Wasm-Faa$ platforms as they constantly map and unmap
Wasm-heaps. RISC-V’s optional sv57 extension [80] similarly
offers 57-bit addresses with similar limitations.

On ARM, an optional extension called Large Virtual Ad-
dressing (LVA [9]) offers 52-bits virtual addresses. However,
LVA increases the minimum page size to 64k in order to sup-
port this with 4-level page tables. Thus, it increases memory
waste due to internal fragmentation, and also impacts com-
patibility. For example, mmap (MAP_FIXED) is not guaranteed
to work if an allocation is not page aligned.

Custom CPU extensions. Multiple processor extensions
have been proposed to support in-process isolation [12, 74,
83, 105]. Some offer the same benefits as our optimizations —
for instance, HFI [74] eliminates the base-addition in SFI
tools, and multiple proposals [12, 74, 83, 105] eliminate guard
regions. However, Segue and ColorGuard allow SFI toolchains
to offer these benefits on existing CPUs.

9 Conclusion

In the last few years, Wasm has made SFI a critical technology
for the internet. However, SFI’s performance and scaling
constraints impact existing users, and create a barrier to
even greater adoption.

Segue uses x86-64 segmentation to bring the cost of SFI in-
strumented memory operations down to a single instruction
(the same as non-Wasm, non-SFI code), often eliminating
well over half of SFI's overhead.

ColorGuard uses memory coloring hardware (e.g, MPK) to
allow Wasm instances to be packed up to 15X more densely,
enabling large scale concurrency with the performance and
simplicity benefits of running in a single address space.

Acknowledgment

Thanks to Chris Fallin for his insightful discussions and
feedback on this work. This work was supported by the Sloan
Foundation, National Science Foundation under Grant Nos.
2327337, 2327336, 2154964, 2155235, 2048262, and 2146755;
and by gifts from Intel, Cisco, Mozilla and the Google V8
team. And finally, thanks to our families, without whose
support this work would not be possible.

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

References

(1]

[2]

(3]

(4]

(5]
(6]
(7]

(8]

(9]

[10

=

(13]

[20]

Akamai. Serverless computing with akamai edgeworkers. https:
//www.akamai.com/products/serverless-computing-edgeworkers.
Accessed: 2024-01-01.

AMD. AMD64 Architecture Programmer’s Manual Volume 3:
General-Purpose and System Instructions. https://www.amd.com/co
ntent/dam/amd/en/documents/processor-tech-docs/programmer-
references/24594.pdf, 2024.

Andreas Rossberg (Ed.). Memory64 proposal for webassembly. https:
//github.com/WebAssembly/memory64, 2020.

Andreas Rossberg (Ed.). Bulk memory operations proposal for we-
bassembly. https://github.com/WebAssembly/bulk-memory-
operations, 2021.

Andreas Rossberg (Ed.). Multi memory proposal for webassembly.
https://github.com/WebAssembly/multi-memory, 2022.
Anonymous. Segue pr in WAMR. Anonymized for double-blind
reviewing, 2023.

ARM. Armv8.5-a memory tagging extension. https://developer.arm.
com/-/media/Arm%20Developer%20Community/PDF/Arm_Memor
y_Tagging_Extension_Whitepaper.pdf.

ARM. Permission Overlays. https://developer.arm.com/documentat
ion/102376/0200/Permission-indirection-and-permission-overlay-
extensions/Permission-overlays.

Arm. ARM architecture reference manual for A-profile architecture.
https://developer.arm.com/documentation/ddi0487/latest/, 2024.
Inyoung Bang, Martin Kayondo, Hyungon Moon, and Yunheung Paek.
{TRust}: A compilation framework for in-process isolation to protect
safe rust against untrusted code. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 6947-6964, 2023.

Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David
Maziéres, and Christos Kozyrakis. Dune: Safe user-level access to
privileged CPU features. In OSDI USENIX, 2012.

Atri Bhattacharyya, Florian Hofhammer, Yuanlong Li, Siddharth
Gupta, Andres Sanchez, Babak Falsafi, and Mathias Payer. Securecells:
A secure compartmentalized architecture. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 2921-2939. IEEE, 2023.

James Bucek, Klaus-Dieter Lange, and Jéakim v. Kistowski. Spec
cpu2017: Next-generation compute benchmark. In Companion of the
2018 ACM/SPEC International Conference on Performance Engineering,
ICPE ’18, page 41-42, New York, NY, USA, 2018. Association for
Computing Machinery.

Sandbox libexpat using rlbox. https://bugzilla.mozilla.org/show_bug.
cgi?id=1688452#c37, November 2021.

Bytecode Alliance. Sightglass: a benchmark suite and tool to compare
different implementations of the same primitives. https://github.c
om/bytecodealliance/sightglass, 2019.

Bytecode Alliance. Wasmtime. https://wasmtime.dev, 2021.
ByteCode Alliance. Wasmtime: wasmtime/benches/call.rs. https:/gi
thub.com/bytecodealliance/wasmtime/blob/main/benches/call.rs,
2024.

Varnish HTTP Cache. Varnish modules. https://developer.fastly.com
/solutions/examples/. Accessed: 2024-01-01.

R Joseph Connor, Tyler McDaniel, Jared M Smith, and Max Schuchard.
{PKU} pitfalls: Attacks on {PKU-based} memory isolation systems.
In 29th USENIX Security Symposium (USENIX Security 20), pages 1409—
1426, 2020.

Russ Cox, Robert Griesemer, Rob Pike, Ian Lance Taylor, and Ken
Thompson. The go programming language and environment. Com-
munications of the ACM, 65(5):70-78, 2022.

[21] John H. Crawford and Patrick P. Gelsinger. Programming the 80386.

(22]

Sybex Books, 1987.

Alex Crichton. Cve-2022-31104: Miscompilation of i8x16.swizzle and
select with v128 inputs. https://www.cve.org/CVERecord?id=CVE-
2022-31104, June 2022.

Shravan Narayan et al.

[23] Alex Crichton. Cve-2023-26489: Guest-controlled out-of-bounds
read/write on x86_64. https://www.cve.org/CVERecord?id=CVE-
2023-26489, June 2023.

WebAssembly Memory64 Discussions. Memory64: bounds-checking

strategies. https://github.com/WebAssembly/memory64/issues/3#iss

uecomment-700841972, 2020.

Duncan Uszkay. How Shopify uses WebAssembly outside of the

browser. https://shopify.engineering/shopify-webassembly, 2020.

Dylan Schiemann. Zoom on web: WebAssembly SIMD, WebTransport,

and WebCodecs. https://www.infoq.com/news/2020/08/zoom-web-

chrome-apis/.

[27] Engineers at large (anonymized for submission) FaaS/CDN provider.
private/direct communication.

[28] Engineers at Mozilla Firefox. private/direct communication.

[29] Evan Wallace. WebAssembly cut Figma’s load time by 3x. https://ww
w.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/, 2017.

[30] Chris Fallin. Cve-2021-32629: Memory access due to code generation

flaw in cranelift module. https://www.cve.org/CVERecord?id=CVE-

2021-32629, May 2021.

Chris Fallin. Wasmtime 1.0: A look at performance. https://bytecode

alliance.org/articles/wasmtime-10-performance, September 2022.

Fastly. Fastly: Code examples. https://developer.fastly.com/solutions

/examples/. Accessed: 2024-01-01.

[33] Adam Foltzer. The lifecycle and performance of a lucet instance.
https://www.fastly.com/blog/lucet-performance-and-lifecycle, 2019.
Accessed: 2022-08-10.

[34] Bryan Ford and Russ Cox. Vx32: Lightweight user-level sandboxing
on the x86. In Proceedings of USENIX ATC 2008. USENIX, 2008.

[35] Nathan Froyd. Securing Firefox with WebAssembly. https://hacks.
mozilla.org/2020/02/securing-firefox-with-webassembly/, 2020.

[36] Phani Kishore Gadepalli, Sean McBride, Gregor Peach, Ludmila
Cherkasova, and Gabriel Parmer. Sledge: a serverless-first, light-
weight wasm runtime for the edge. In Middleware °20: 21st Interna-
tional Middleware Conference, Delft, The Netherlands, December 7-11,
2020. ACM, 2020.

[37] Gee. Named address spaces. https://gcc.gnu.org/onlinedocs/gcc-
9.1.0/gcc/Named-Address-Spaces.html.

[38] Nuwan Goonasekera, William Caelli, and Colin Fidge. LibVM: an
architecture for shared library sandboxing. Software: Practice and
Experience, 45(12), 2015.

[39] Floris Gorter, Taddeus Kroes, Herbert Bos, and Cristiano Giuffrida.
Sticky Tags: Efficient and Deterministic Spatial Memory Error Miti-
gation using Persistent Memory Tags. In S&P, May 2024.

[40] Joey Gouly. [PATCH] Permission Overlay Extension . https://patc
hwork.kernel.org/project/linux-fsdevel/cover/20231124163510.183
5740-1-joey.gouly@arm.com/, November 2023.

[41] Graphite - A free and open rendering engine for complex scripts.
http://scripts.sil.org/RenderingGraphite, 2012.

[42] Jinyu Gu, Hao Li, Wentai Li, Yubin Xia, and Haibo Chen. Epk: Scalable
and efficient memory protection keys. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2022.

[43] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer,
Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with WebAssembly. In PLDL
ACM, 2017.

[44] L. Hansen. Mark the jump_table_entry instruction as loading. https:
//github.com/bytecodealliance/cranelift/pull/805, 2019.

[45] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John

Criswell, Michael L Scott, Kai Shen, and Mike Marty. Hodor: Intra-

process isolation for high-throughput data plane libraries. In 2019

USENIX Annual Technical Conference, USENIX ATC 2019, Renton, WA,

USA, July 10-12, 2019. USENIX Association, 2019.

Bobby Holley. WebAssembly and back again: Fine-grained sandbox-

ing in Firefox 95. https://hacks.mozilla.org/2021/12/webassembly-

(24

[l

[25

=

(26

=

—
w
—_

—

—
w
Do

—

[46

=

https://www.akamai.com/products/serverless-computing-edgeworkers
https://www.akamai.com/products/serverless-computing-edgeworkers
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://www.amd.com/content/dam/amd/en/documents/processor-tech-docs/programmer-references/24594.pdf
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/memory64
https://github.com/WebAssembly/bulk-memory-operations
https://github.com/WebAssembly/bulk-memory-operations
 https://github.com/WebAssembly/multi-memory
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions/Permission-overlays
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions/Permission-overlays
https://developer.arm.com/documentation/102376/0200/Permission-indirection-and-permission-overlay-extensions/Permission-overlays
https://developer.arm.com/documentation/ddi0487/latest/
https://bugzilla.mozilla.org/show_bug.cgi?id=1688452#c37
https://bugzilla.mozilla.org/show_bug.cgi?id=1688452#c37
https://github.com/bytecodealliance/sightglass
https://github.com/bytecodealliance/sightglass
https://wasmtime.dev
https://github.com/bytecodealliance/wasmtime/blob/main/benches/call.rs
https://github.com/bytecodealliance/wasmtime/blob/main/benches/call.rs
https://developer.fastly.com/solutions/examples/
https://developer.fastly.com/solutions/examples/
https://www.cve.org/CVERecord?id=CVE-2022-31104
https://www.cve.org/CVERecord?id=CVE-2022-31104
https://www.cve.org/CVERecord?id=CVE-2023-26489
https://www.cve.org/CVERecord?id=CVE-2023-26489
https://github.com/WebAssembly/memory64/issues/3#issuecomment-700841972
https://github.com/WebAssembly/memory64/issues/3#issuecomment-700841972
https://shopify.engineering/shopify-webassembly
https://www.infoq.com/news/2020/08/zoom-web-chrome-apis/
https://www.infoq.com/news/2020/08/zoom-web-chrome-apis/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://www.figma.com/blog/webassembly-cut-figmas-load-time-by-3x/
https://www.cve.org/CVERecord?id=CVE-2021-32629
https://www.cve.org/CVERecord?id=CVE-2021-32629
https://bytecodealliance.org/articles/wasmtime-10-performance
https://bytecodealliance.org/articles/wasmtime-10-performance
https://developer.fastly.com/solutions/examples/
https://developer.fastly.com/solutions/examples/
https://www.fastly.com/blog/lucet-performance-and-lifecycle
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Named-Address-Spaces.html
https://gcc.gnu.org/onlinedocs/gcc-9.1.0/gcc/Named-Address-Spaces.html
https://patchwork.kernel.org/project/linux-fsdevel/cover/20231124163510.1835740-1-joey.gouly@arm.com/
https://patchwork.kernel.org/project/linux-fsdevel/cover/20231124163510.1835740-1-joey.gouly@arm.com/
https://patchwork.kernel.org/project/linux-fsdevel/cover/20231124163510.1835740-1-joey.gouly@arm.com/
http://scripts.sil.org/RenderingGraphite
https://github.com/bytecodealliance/cranelift/pull/805
https://github.com/bytecodealliance/cranelift/pull/805
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/

Segue & ColorGuard: Optimizing SFI Performance and Scalability on Modern Architectures ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

(51]

(52

—

[53

—_

[54]

(55

—

(56

—

(57]

(58

[t

(59

—

(60

-

[61]

[62]

(63]

and-back-again-fine-grained-sandboxing-in-firefox-95/, November
2021.

Intel. 5-level paging and 5-level ept white paper. https://www.inte
l.com/content/www/us/en/content-details/671442/5-level-paging-
and-5-level-ept-white-paper.html, May 2017.

Intel. WebAssembly Micro Runtime. https://github.com/bytecodeall
iance/wasm-micro-runtime, 2020.

Intel. Envisioning a simplified intel architecture. https://www.intel.
com/content/www/us/en/developer/articles/technical/envisioning-
future-simplified-architecture.html, November 2023.

Intel® 64 and IA-32 architectures software developer’s manual. https:
//www.intel.com/content/www/us/en/developer/articles/technical
/intel-sdm.html, 2023.

Intel. Wamr release 1.2.3. https://github.com/bytecodealliance/wasm-
micro-runtime/releases/tag/WAMR-1.2.3, 2023.

Intel. WAMR vectorization optimizations. https://github.com/bytec
odealliance/wasm-micro-runtime/blob/b3f728ceb36f9c72047a934
436ef41699643ab99/core/iwasm/compilation/aot_Ilvm_extra.cpp#
L330, 2024.

formatted by felix coultier Intel. x86 and amd64 instruction reference.
https://www.felixcloutier.com/x86/wrpkru, October 2024.
Mohannad Ismail, Jinwoo Yom, Christopher Jelesnianski, Yeongjin
Jang, and Changwoo Min. Vip: Safeguard value invariant property
for thwarting critical memory corruption attacks. In Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1612-1626, 2021.

Abhinav Jangda, Bobby Powers, Emery D. Berger, and Arjun Guha.
Not so fast: Analyzing the performance of WebAssembly vs. native
code. In ATC. USENIX, 2019.

Christopher Jelesnianski, Mohannad Ismail, Yeongjin Jang, Dan
Williams, and Changwoo Min. Protect the system call, protect (most
of) the world with bastion. In Proceedings of the 28th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3, pages 528-541, 2023.

Kenton Varda. WebAssembly on Cloudflare Workers. https://blog.c
loudflare.com/webassembly-on-cloudflare-workers/, 2018.
kernel.org. The linux kernel documentation. https://www.kernel.org
/doc/html/next/x86/x86_64/fsgs.html, June 2024.

Paul Kirth, Mitchel Dickerson, Stephen Crane, Per Larsen, Adrian
Dabrowski, David Gens, Yeoul Na, Stijn Volckaert, and Michael Franz.
Pkru-safe: Automatically locking down the heap between safe and un-
safe languages. In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 132-148, 2022.

Matthew Kolosick, Shravan Narayan, Conrad Watt, Michael LeMay,
Deepak Garg, Ranjit Jhala, and Deian Stefan. Isolation without tax-
ation: Near zero cost transitions for sfi. In Proceedings of the ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL).
ACM, January 2022.

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias
Athanasopoulos. No need to hide: Protecting safe regions on com-
modity hardware. In EuroSys. ACM, 2017.

Butler W Lampson. Protection. ACM SIGOPS Operating Systems
Review, 8(1):18-24, 1974.

Hojoon Lee, Chihyun Song, and Brent Byunghoon Kang. Lord of the
x86 rings: A portable user mode privilege separation architecture on
x86. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, pages 1441-1454, 2018.

Nico Lehmann, Adam T Geller, Niki Vazou, and Ranjit Jhala. Flux: Lig-
uid types for rust. Proceedings of the ACM on Programming Languages,
7(PLDI):1533-1557, 2023.

Expat XML parser. https://libexpat.github.io/.

Louis-Noél Pouchet. Polybench/c: the polyhedral benchmark suite.
https://web.archive.org/web/20231102034252/http://web.cse.ohio-
state.edu/~pouchet.2/software/polybench/.

[67] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon

(68

[69
[70
[71

(72

(73

(74

(75

(76

(77

(78

(79

(80

(81

(82

(83

(84

=

e o T '

[t

=

[

—

—

=

[

]

—

—

=

flan?

Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici.
My VM is lighter (and safer) than your container. In Proceedings of
the 26th Symposium on Operating Systems Principles (OSDI), 2017.
Catalin Marinas. Linux 6.5 ARM updates. https://lore.kernel.org/
Ikml/20230626174435.1791242-1-catalin.marinas@arm.com/, June
2023.

Stephen McCamant and Greg Morrisett. Efficient, verifiable binary
sandboxing for a CISC architecture. CSAIL Tech report, 2005.
Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC
architecture. In Security. USENIX, 2006.

Tyler McMullen. Lucet: A compiler and runtime for high-concurrency
low-latency sandboxing. In PriSC, 2020.

Shravan Narayan, Craig Disselkoen, Tal Garfinkel, Nathan Froyd, Eric
Rahm, Sorin Lerner, Hovav Shacham, and Deian Stefan. Retrofitting
fine grain isolation in the Firefox renderer. In SEC. USENIX, 2020.
Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,
Hovav Shacham, Dean Tullsen, and Deian Stefan. Swivel: Hardening
{WebAssembly} against spectre. In 30th USENIX Security Symposium
(USENIX Security 21), pages 1433-1450, 2021.

Shravan Narayan, Tal Garfinkel, Mohammadkazem Taram, Joey
Rudek, Daniel Moghimi, Evan Johnson, Chris Fallin, Anjo Vahldiek-
Oberwagner, Michael LeMay, Ravi Sahita, et al. Going beyond the
limits of sfi: Flexible and secure hardware-assisted in-process isola-
tion with hfi. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 3, pages 266—-281, 2023.

Robert M. Norton. Hardware support for compartmentalisation. Tech-
nical Report UCAM-CL-TR-887, University of Cambridge, Computer
Laboratory, May 2016.

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim.
libmpk: Software abstraction for intel memory protection keys (intel
mpk). In Proceedings of the USENIX Annual Technical Conference
(ATC), pages 241-254, 2019.

Pat Hickey. Announcing Lucet: Fastly’s native WebAssembly com-
piler and runtime. https://www.fastly.com/blog/announcing-lucet-
fastly-native-webassembly-compiler-runtime, 2019.

Pat Hickey. How Fastly and the developer community are investing in
the WebAssembly ecosystem. https://www.fastly.com/blog/how-fast
ly-and-developer-community-invest-in-webassembly-ecosystem,
2020.

Pengyuan Bian. Istio and Envoy WebAssembly extensibility, one year
on. https://istio.io/latest/blog/2021/wasm-progress/, 2021.

RISC-V. Risc-v gets sv57-based virtual memory. https://riscv.or
g/news/2022/03/risc-v-gets-sv57-based-virtual-memory-other-
improvements-for-linux-5-18-michael-larabel-phoronix/, March
2022.

Henrik Rydgard. Windows (Fastcall) calling convention: Callee-saved
XMM (FP) registers are not actually saved. https://github.com/bytec
odealliance/wasmtime/issues/1177, 2020.

David Schrammel, Samuel Weiser, Richard Sadek, and Stefan Man-
gard. Jenny: Securing syscalls for {PKU-based} memory isolation
systems. In 31st USENIX Security Symposium (USENIX Security 22),
pages 936-952, 2022.

David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain
keys - efficient in-process isolation for risc-v and x86. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1677-1694. USENIX
Association, August 2020.

Mark Seaborn. Sandboxing libraries in Chrome using SFI: zlib proof-
of-concept. https://docs.google.com/presentation/d/1RD3bxsBfTZ
Olfrlq7HzGMsygPHgb61AT1eTdellYOurs/, 2013.

https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://hacks.mozilla.org/2021/12/webassembly-and-back-again-fine-grained-sandboxing-in-firefox-95/
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://www.intel.com/content/www/us/en/content-details/671442/5-level-paging-and-5-level-ept-white-paper.html
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/envisioning-future-simplified-architecture.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/bytecodealliance/wasm-micro-runtime/releases/tag/WAMR-1.2.3
https://github.com/bytecodealliance/wasm-micro-runtime/releases/tag/WAMR-1.2.3
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b3f728ceb36f9c72047a934436ef41699643ab99/core/iwasm/compilation/aot_llvm_extra.cpp#L330
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b3f728ceb36f9c72047a934436ef41699643ab99/core/iwasm/compilation/aot_llvm_extra.cpp#L330
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b3f728ceb36f9c72047a934436ef41699643ab99/core/iwasm/compilation/aot_llvm_extra.cpp#L330
https://github.com/bytecodealliance/wasm-micro-runtime/blob/b3f728ceb36f9c72047a934436ef41699643ab99/core/iwasm/compilation/aot_llvm_extra.cpp#L330
https://www.felixcloutier.com/x86/wrpkru
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://www.kernel.org/doc/html/next/x86/x86_64/fsgs.html
https://www.kernel.org/doc/html/next/x86/x86_64/fsgs.html
https://libexpat.github.io/
https://web.archive.org/web/20231102034252/http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.archive.org/web/20231102034252/http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://lore.kernel.org/lkml/20230626174435.1791242-1-catalin.marinas@arm.com/
https://lore.kernel.org/lkml/20230626174435.1791242-1-catalin.marinas@arm.com/
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://www.fastly.com/blog/how-fastly-and-developer-community-invest-in-webassembly-ecosystem
https://istio.io/latest/blog/2021/wasm-progress/
https://riscv.org/news/2022/03/risc-v-gets-sv57-based-virtual-memory-other-improvements-for-linux-5-18-michael-larabel-phoronix/
https://riscv.org/news/2022/03/risc-v-gets-sv57-based-virtual-memory-other-improvements-for-linux-5-18-michael-larabel-phoronix/
https://riscv.org/news/2022/03/risc-v-gets-sv57-based-virtual-memory-other-improvements-for-linux-5-18-michael-larabel-phoronix/
https://github.com/bytecodealliance/wasmtime/issues/1177
https://github.com/bytecodealliance/wasmtime/issues/1177
https://docs.google.com/presentation/d/1RD3bxsBfTZOIfrlq7HzGMsygPHgb61A1eTdelIYOurs/
https://docs.google.com/presentation/d/1RD3bxsBfTZOIfrlq7HzGMsygPHgb61A1eTdelIYOurs/

—

=

—

ASPLOS 25, March 30-April 3, 2025, Rotterdam, Netherlands.

[85] Korakit Seemakhupt, Brent E Stephens, Samira Khan, Sihang Liu,

Hassan Wassel, Soheil Hassas Yeganeh, Alex C Snoeren, Arvind Kr-
ishnamurthy, David E Culler, and Henry M Levy. A cloud-scale
characterization of remote procedure calls. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages 498-514, 2023.
David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. Adapting software fault
isolation to contemporary CPU architectures. In Security. USENIX,
2010.

Rafael Sene. Risc-v memory tagging task group. https://github.com
/riscv-admin/riscv-memory-tagging, May 2024.

Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Char-
acterizing and optimizing the serverless workload at a large cloud
provider. In 2020 USENIX annual technical conference (USENIX ATC
20), pages 205-218, 2020.

Igor Sheludko and Santiago Aboy Solanes. Pointer compression in
V8. https://v8.dev/blog/pointer-compression, 2020.

Simon Shillaker and Peter Pietzuch. FAASM: Lightweight isolation
for efficient stateful serverless computing. In ATC. USENIX, 2020.
SingleStore. Docs: Code engine - powered by wasm. https://docs.sin
glestore.com/cloud/reference/code-engine-powered-by-wasm/.

[92] Jovan Stojkovic, Chunao Liu, Muhammad Shahbaz, and Josep Torrel-

las. pmanycore: A cloud-native cpu for tail at scale. In Proceedings of
the 50th Annual International Symposium on Computer Architecture,
pages 1-15, 2023.

Gang Tan. Principles and implementation techniques of software-
based fault isolation. Foundations and Trends in Privacy and Security,
1(3), 2017.

The WebAssembly Binary Toolkit. wasm2c. https://github.com/Web
Assembly/wabt/tree/master/wasm2c, 2018.

Thomas Nattestad. WebAssembly brings Google Earth to more
browsers. https://blog.chromium.org/2019/06/webassembly-
brings-google-earth-to-more.html, 2019.

Nabeel Al-Shamma Thomas Nattestad. Photoshop’s journey to the
web. https://web.dev/ps-on-the-web/, 2022.

Tokio. An asynchronous rust runtime. https://tokio.rs/. Accessed:
2024-01-01.

Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, efficient
in-process isolation with protection keys (MPK). In Security. USENIX,
2019.

Alexios Voulimeneas, Jonas Vinck, Ruben Mechelinck, and Stijn Vol-
ckaert. You shall not (by) pass! practical, secure, and fast pku-based
sandboxing. In Proceedings of the Seventeenth European Conference
on Computer Systems, pages 266-282, 2022.

=

— =

[

—

Shravan Narayan et al.

[100] Luke Wagner. Component model design and specification. https:

//github.com/WebAssembly/component-model.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient software-based fault isolation. In SOSP. ACM,
1993.

Zhe Wang, Chenggang Wu, Mengyao Xie, Yinqian Zhang, Kangjie
Lu, Xiaofeng Zhang, Yuanming Lai, Yan Kang, and Min Yang. Seimi:
Efficient and secure smap-enabled intra-process memory isolation.
In 2020 IEEE Symposium on Security and Privacy (SP), pages 592-607.
IEEE, 2020.

WebAssembly system interface. https://wasi.dev. Accessed: 2024-01-
01.

Wasmtime. Security advisories. https://github.com/bytecodeallianc
e/wasmtime/security/advisories, February 2024.

R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Ander-
son, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera. Cheri: A hybrid capability-
system architecture for scalable software compartmentalization. In
2015 IEEE Symposium on Security and Privacy, pages 20-37, 2015.
Reinhold P Weicker. Dhrystone: a synthetic systems programming
benchmark. Communications of the ACM, 27(10):1013-1030, 1984.
Sebastian Winkel and Jason Agron. Introducing intel advanced per-
formance extensions (intel apx). https://www.intel.com/content/
www/us/en/developer/articles/technical/advanced-performance-
extensions-apx.html, August 2023.

Mengyao Xie, Chenggang Wu, Yingian Zhang, Jiali Xu, Yuanming Lai,
Yan Kang, Wei Wang, and Zhe Wang. Cetis: Retrofitting intel cet for
generic and efficient intra-process memory isolation. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 2989-3002, 2022.

Zachary Yedidia. Lightweight fault isolation: Practical, efficient, and
secure software sandboxing. In Proceedings of the 29th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, ASPLOS ’24, page 649-665, New
York, NY, USA, 2024. Association for Computing Machinery.
Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. Native Client: A sandbox for portable, untrusted x86 native
code. In S&P. IEEE, 2009.

Alon Zakai. Wasmboxc: Simple, easy, and fast vm-less sandboxing.
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html,
2020.

Bin Zeng, Gang Tan, and Greg Morrisett. Combining control-flow in-
tegrity and static analysis for efficient and validated data sandboxing.
In CCS, 2011.

Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. Armlock:
Hardware-based fault isolation for arm. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security,
Scottsdale, AZ, USA, November 3-7, 2014. ACM, 2014.

https://github.com/riscv-admin/riscv-memory-tagging
https://github.com/riscv-admin/riscv-memory-tagging
https://v8.dev/blog/pointer-compression
https://docs.singlestore.com/cloud/reference/code-engine-powered-by-wasm/
https://docs.singlestore.com/cloud/reference/code-engine-powered-by-wasm/
https://github.com/WebAssembly/wabt/tree/master/wasm2c
https://github.com/WebAssembly/wabt/tree/master/wasm2c
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://blog.chromium.org/2019/06/webassembly-brings-google-earth-to-more.html
https://web.dev/ps-on-the-web/
https://tokio.rs/
https://github.com/WebAssembly/component-model
https://github.com/WebAssembly/component-model
https://wasi.dev
https://github.com/bytecodealliance/wasmtime/security/advisories
https://github.com/bytecodealliance/wasmtime/security/advisories
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://www.intel.com/content/www/us/en/developer/articles/technical/advanced-performance-extensions-apx.html
https://kripken.github.io/blog/wasm/2020/07/27/wasmboxc.html

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Segue and ColorGuard
	3.1 Reducing SFI overhead with Segue
	3.2 Improving Scalability with ColorGuard

	4 Implementing Segue
	4.1 Implementing Segue in Wasm2c
	4.2 Implementing Segue in WAMR
	4.3 Segue in LFI

	5 Implementing ColorGuard
	5.1 Implementing ColorGuard in Wasmtime
	5.2 Verifying ColorGuard

	6 Evaluation
	6.1 Segue on Wasm2c
	6.2 Segue on WAMR
	6.3 Segue on LFI
	6.4 ColorGuard on Wasmtime

	7 ColorGuard on ARM
	8 Related Work
	9 Conclusion
	References

